81 resultados para Método de Monte Carlo via cadeias de Markov

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brachytherapy braquiterapia is an x-ray modality radiotherapy in which stamped or halfstamped radioactive sources in format of seeds are used, wires or to one short distance, in contact or implanted to the fabric to be treated. All the treatment modalities require a previous planning. The formalism recommended for calculation of dose was considered by the AAPM for the first TG-43 Report. In it distributions of dose of isolated seeds measured and calculated by Monte Carlo method in water instead of with models half-empiricists. In this work we in accordance with present some preliminary results of the calculation of functions of radial anisotropy and of dose in the distance for seed of 192Ir, wide used in brachytherapy treatments of high tax of dose (HDR), with the aid of the program based on the Monte Carlo method MCNPX v2.50 (Mount Carlo N ParticleeXtended). The materials chosen in the simulation beyond water, had been MS20 and estriado muscle

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The huge demand for procedures involving ionizing radiation promotes the need for safe methods of experimentation considering the danger of their biological e ects with consequent risk to humans. Brazilian's legislation prohibits experiments involving this type of radiation in humans through Decree 453 of Ministry of Health with determines that such procedures comply with the principles of justi cation, optimization and dose limitation. In this line, concurrently with the advancement of available computer processing power, computing simulations have become relevant in those situations where experimental procedures are too cost or impractical. The Monte Carlo method, created along the Manhattan Project duringWorldWar II, is a powerful strategy to simulations in computational physics. In medical physics, this technique has been extensively used with applications in diagnostics and cancer treatment. The objective of this work is to simulate the production and detection of X-rays for the energy range of diagnostic radiology, for molybdenum target, using the Geant4 toolkit. X-ray tubes with this kind of target material are used in diagnostic radiology, speci cally in mammography, one of the most used techniques for screening of breast cancer in women. During the simulations, we used di erent models for bremsstrahlung available in physical models for low energy, in situations already covered by the literature in earlier versions of Geant4. Our results show that although the physical situations seems qualitatively adequate, quantitative comparisons to available analytical data shows aws in the code of Geant4 Low Energy source

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a discussion and the results of the simulation of disease spread using the Monte Carlo method. The dissemination model is the SIR model and presents as main characteristic the disease evolution among individuals of the population subdivided into three groups: susceptible (S), infected (I) and recovered (R). The technique used is based on the introduction of transition probabilities S-> I and I->R to do the spread of the disease, they are governed by a Poisson distribution. The simulation of the spread of disease was based on the randomness introduced, taking into account two basic parameters of the model, the power of infection and average time of the disease. Considering appropriate values of these parameters, the results are presented graphically and analysis of these results gives information on a group of individuals react to the changes of these parameters and what are the chances of a disease becoming a pandemic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foram realizados quatro estudos de simulação para verificar a distribuição de inversas de variáveis com distribuição normal, em função de diferentes variâncias, médias, pontos de truncamentos e tamanhos amostrais. As variáveis simuladas foram GMD, com distribuição normal, representando o ganho médio diário e DIAS, obtido a partir da inversa de GMD, representando dias para se obter determinado peso. em todos os estudos, foi utilizado o sistema SAS® (1990) para simulação dos dados e para posterior análise dos resultados. As médias amostrais de DIAS foram dependentes dos desvios-padrão utilizados na simulação. As análises de regressão mostraram redução da média e do desvio-padrão de DIAS em função do aumento na média de GMD. A inclusão de um ponto de truncamento entre 10 e 25% do valor da média de GMD reduziu a média de GMD e aumentou a de DIAS, quando o coeficiente de variação de GMD foi superior a 25%. O efeito do tamanho dos grupos nas médias de GMD e DIAS não foi significativo, mas o desvio-padrão e CV amostrais médios de GMD aumentaram com o tamanho do grupo. em virtude da dependência entre a média e o desvio-padrão e da variação observada nos desvios-padrão de DIAS em função do tamanho do grupo, a utilização de DIAS como critério de seleção pode diminuir a acurácia da variação. Portanto, para a substituição de GMD por DIAS, é necessária a utilização de um método de análise robusto o suficiente para a eliminação da heterogeneidade de variância.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties-and, in some cases, rewards-that introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the maximum continuous interruption duration (MCID) per customer.This parameter is responsible for the majority of penalties in many electric distribution utilities. This paper describes analytical and Monte Carlo simulation approaches to evaluate probability distributions of interruption duration indices. More emphasis will be given to the development of an analytical method to assess the probability distribution associated with the parameter MCID and the correspond ng penalties. Case studies on a simple distribution network and on a real Brazilian distribution system are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties, and in some cases rewards, which introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the Maximum Continuous Interruption Duration per customer (MCID). This paper describes a chronological Monte Carlo simulation approach to evaluate probability distributions of reliability indices, including the MCID, and the corresponding penalties. In order to get the desired efficiency, modern computational techniques are used for modeling (UML -Unified Modeling Language) as well as for programming (Object- Oriented Programming). Case studies on a simple distribution network and on real Brazilian distribution systems are presented and discussed. © Copyright KTH 2006.