58 resultados para Lycopene

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lycopene is a natural carotenoid, free radical scavenger, and presents protective effects by inhibiting oxidative DNA damage. The objective of the current study was to investigate the cytogenetic effects of a single acute and four daily gavage administrations of lycopene, and to examine possible protective effects on chromosomal damage induced by the antitumor drug cisplatin (cDDP) in rat bone marrow cells. The animals were divided into treatment groups, with three lycopene doses in the acute treatment (2, 4, and 6 mg/kg b.w.), three lycopene doses in the subacute treatment (0.5, 1.0, and 1.5 mg/kg b.w.) with and without cDDP (5 mg/kg b.w. i.p.), and respective controls. The results indicated that lycopene is neither cytotoxic nor clastogenic when compared with the negative controls (P > 0.01). cDDP-treated animals submitted to acute and subacute treatments with different lycopene doses showed a significant reduction (p < 0.01) in the number of abnormal metaphases when compared with the animals treated only with cDDP. The protective effects of lycopene on cDDP-induced chromosomal damage may be attributed to its antioxidant activity. These results suggest that this carotenoid may prove useful in reducing some of the toxic effects associated with certain classes of chemotherapeutic agents. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have provided evidence that high consumption of tomatoes effectively reduces the risk of reactive oxygen species (ROS)-mediated diseases such as cancer. Tomatoes are rich sources of lycopene, a potent singlet oxygen-quenching carotenoid. In addition to its antioxidant properties, lycopene shows an array of biological effects including antimutagenic and anticarcinogenic activities. In the present study, the chemopreventive action of lycopene was examined on DNA damage and clastogenic or aneugenic effects of H2O2 and n-nitrosodiethylamine (DEN) in the metabolically competent human hepatoma cell line (HepG2 cells). Lycopene at concentrations of 10. 25, and 50 mu M, was tested under three protocols: before, simultaneously, and after treatment with the mutagen, using the comet and micronucleus assays. Lycopene significantly reduced the genotoxicity and mutagenicity of H2O2 in all of the conditions tested. For DEN, significant reductions of primary DNA damage (comet assay) were detected when the carotenoid (all of the doses) was added in the cell culture medium before or simultaneously with the mutagen. In the micronucleus test, the protective effect of lycopene was observed only when added prior to DEN treatment. In conclusion, our results suggest that lycopene is a suitable agent for preventing chemically-induced DNA and chromosome damage. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doxorubicin is an excellent chemotherapeutic agent utilized for several types of cancer but the irreversible doxorubicin-induced cardiac damage is the major limitation for its use. Oxidative stress seems to be associated with some phase of the toxicity mechanism process. To determine if lycopene protects against doxorubicin-induced cardiotoxicity, male Wistar rats were randomly assigned either to control, lycopene, doxorubicin or doxorubicin + lycopene groups. They received corn oil (control, doxorubicin) or lycopene (5 mg/kg body weight a day) (lycopene, doxorubicin + lycopene) by gavage for a 7-week period. They also received saline (control, lycopene) or doxorubicin (4 mg/kg) (doxorubicin, doxorubin + lycopene) intraperitoneally by week 3, 4 5 and 6. Animals underwent echocardiogram and were killed for tissue analyses by week 7. Mean lycopene levels (nmol/kg) in liver were higher in the doxorubicin + lycopene group (5822.59) than in the lycopene group (2496.73), but no differences in lycopene were found in heart or Plasma of these two groups. Lycopene did not prevent left ventricular systolic dysfunction induced by doxorubicin. However, morphologic examination revealed that doxorubicin-induced myocyte damage was significantly suppressed in rats treated with lycopene. Doxorubicin treatment was followed by increase of myocardium interstitial collagen volume fraction. Our results show that: (i) doxorubicin-induced cardiotoxicity was confirmed by echocardiogram and morphological evaluations; (ii) lycopene absorption was confirmed by its levels in heart, liver and plasma; (iii) lycopene supplementation provided myocyte protection without preventing interstitial collagen accumulation increase; (iv) doxorubicin-induced cardiac dysfunction was not prevented by lycopene supplementation; and (v) lycopene depletion was not observed in plasma and tissues from animals treated with doxorubicin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lycopene is a natural pigment synthesized by plants and microorganisms, and it is mainly found in tomatoes. It is an acyclic isomer of P-carotene and one of the most potent antioxidants. Several studies have demonstrated the ability of lycopene to prevent chemically induced DNA damage; however, the mechanisms involved are still not clear. In the present study, we investigated the antigenotoxic/antimutagenic effects of lycopene in Chinese Hamster Ovary Cells (CHO) treated with hydrogen peroxide, methylmethanesulphonate (MMS), or 4-nitroquinoline-1-oxide (4-NQO). Lycopene (97%), at final concentrations of 10, 25, and 50 M, was tested under three different protocols: before, simultaneously, and after the treatment with the mutagens. Comet and cytokinesis-block micronucleus assays were used to evaluate the level of DNA damage. Data showed that lycopene reduced the frequency of micronucleated cells induced by the three mutagens. However, this chemopreventive activity was dependent on the concentrations and treatment schedules used. Similar results were observed in the comet assay, although some enhancements of primary DNA damage were detected when the carotenoid was administered after the mutagens. In conclusion, our findings confirmed the chemopreventive activity of lycopene, and showed that this effect occurs under different mechanisms. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of doxorubicin-induced cardiotoxicity remains controversial. Wistar rats (n=96) were randomly assigned to a control (C), lycopene (L), doxorubicin (D), or doxorubicin+lycopene (DL) group. The L and DL groups received lycopene (5 mg/kg body wt/day by gavage) for 7 weeks. The D and DL groups received doxombicin (4 mg/kg body wt intraperitoneally) at 3, 4, 5, and 6 weeks and were killed at 7 weeks for analyses. Myocardial tissue lycopene levels and total antioxidant performance (TAP) were analyzed by HPLC and fluorometry, respectively. Lycopene metabolism was determined by incubating H-2(10)-lycopene with intestinal mucosa postmitochondrial fraction and lipoxygenase and analyzed with HPLC and APCI mass spectroscopy. Myocardial tissue lycopene levels in DL and L were similar. TAP adjusted for tissue protein were higher in myocardium of D than those of C (P=0.002). Lycopene metabolism study identified a lower oxidative cleavage of lycopene in D as compared to those of C. Our results showed that lycopene was not depleted in myocardium of lycopene-supplemented rats treated with doxorubicin and that higher antioxidant capacity in myocardium and less oxidative cleavage of lycopene in intestinal mucosa of doxorubicin-treated rats suggest an antioxidant role of doxombicin rather than acting as a prooxidant. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current knowledge of the bioavailability of lycopene in humans is limited due to the inability to distinguish newly administered lycopene from the body reserves of lycopene. A quantitative method to assess the absorption and relative bioavailability of newly absorbed synthetic or natural lycopene was developed using two deuterated lycopene sources, in conjunction with an advanced LC/APCI-MS (liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry) to analyze newly absorbed lycopene in blood samples of study subjects. Two subjects (1 male and 1 female) consumed hydroponically grown tomatoes containing deuterium-enriched lycopene (8084 g wet weight tomato containing 16.3 and 17.4 mu mol lycopene, respectively) and two subjects (1 male, and 1 female) consumed 11 mu mol synthetic H-2(10) lycopene in 6 g of corn oil. Tomatoes were steamed and pureed. The doses were given together with a liquid formulated drink with 25% energy from fat. Our results showed that up to 34 days after taking an oral 2 1110 lycopene dose (synthetic or from tomato) with a liquid formula drink, the area under the curve of the average serum percent enrichment response of synthetic lycopene reached 33.9 (+/- 1.7) nmol-day/mu mol lycopene in the dose, whereas that of lycopene from the tomato dose was 11.8 (+/- 0.3) nmol-day/mu mol lycopene in the dose. Our study provides evidence that the absorption of physiological levels of lycopene in intrinsically labeled tomatoes can be studied in humans. From these preliminary investigations, we find that the bioavailability of synthetic lycopene in oil appears to be about three times higher than that of lycopene from steamed and pureed tomatoes. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine lycopene uptake and tissue distribution in ferrets (Mustela putorius furo) and F344 rats, we supplemented orally 4.6 mg/(kg body wt-d) lycopene in a tomato oleoresin-com oil mixture (experimental groups). After 9 wk of supplementation, the animals were killed and blood and organs were collected. Plasma and tissue carotenoids were extracted and measured using HPLC. Mean concentrations of lycopene (nmol/kg wet tissue) in saponified tissues of ferrets were as follows: liver 933, intestine 73, prostate 12.7 and stomach 9.3. Levels of lycopene (nmol/kg wet tissue) in saponified tissue of rats were as follows: liver 14213, intestine 3125, stomach 78.6, prostate 24 and testis 3.9. When these organs were extracted without saponification, the lycopene levels were lower, except for rat testis. All-translycopene was the predominant isomer found in tomato oleoresin and in the majority of rat tissues, whereas cislycopenes were predominant in rat prostate and plasma. This pattern was reversed in ferrets. The results show the following: 1) lycopene from tomato oleoresin is absorbed and stored primarily in the liver of both animals; 2) saponification generally improves the extraction of lycopene from most tissues of both animals; 3) cis-lycopene and all- translycopene are the predominant isomers in ferret and rat tissues, respectively; and 4) rats absorb lycopene more effectively than ferrets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the post-mitochondrial fraction of rat intestinal mucosa, we have investigated lycopene metabolism. The incubation media was composed of NAD+, KCI, and DTT with or without added lipoxygenase. The addition of lipoxygenase into the incubation significantly increased the production of lycopene metabolites. The enzymatic incubation products of 2H10 lycopene were separated using high-performance liquid chromatography and analyzed by UV/Vis spectrophotometer and atmospheric pressure chemical ionization-mass spectroscopy. We have identified two types of products: cleavage products and oxidation products. The cleavage products are likely: (1) 3-keto-apo-13-lycopenone (C18H24O2 or 6,10,14-trimethyl-12-one-3,5,7,9,13-pentadecapentaen-2-one) with lambdamax = 365 nm and m/z =272 and (2) 3,4-dehydro-5,6-dihydro-15-apo-lycopenal (C20H28O or 3,7,11,15-tetramethyl-2,4,6,8,12,14-hexadecahexaen-l-al) with lambdamax= 380 nm and m/z = 284. The oxidative metabolites are likely: (3) 2-ene-5,8-lycopenal-furanoxide (C37H50O) with lambdamax = 415 nm, 435 nm, and 470 nm, and m/z = 510; (4) lycopene-5, 6, 5', 6'-diepoxide (C40H56O2) with lambdamax = 415 nm, 440 nm, and 470 nm, and m/z =568; (5) lycopene-5,8-furanoxide isomer (I) (C40H56O2) with lambdamax = 410 nm, 440 nm, and 470 nm, and m/z = 552; (6) lycopene-5,8-epoxide isomer (II) (C40H56O) with lambdamax = 410, 440, 470 nm, and m/z = 552; and (7) 3-keto-lycopene-5',8'-furanoxide (C40H54O2) with lambdamax = 400 nm, 420 nm, and 450 nm, and m/z = 566. These results demonstrate that both central and excentric cleavage of lycopene occurs in the rat intestinal mucosa in the presence of soy lipoxygenase.