11 resultados para Lorentz space

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We work on some general extensions of the formalism for theories which preserve the relativity of inertial frames with a nonlinear action of the Lorentz transformations on momentum space. Relativistic particle models invariant under the corresponding deformed symmetries are presented with particular emphasis on deformed dilatation transformations. The algebraic transformations relating the deformed symmetries with the usual (undeformed) ones are provided in order to preserve the Lorentz algebra. Two distinct cases are considered: a deformed dilatation transformation with a spacelike preferred direction and a very special relativity embedding with a lightlike preferred direction. In both analysis we consider the possibility of introducing quantum deformations of the corresponding symmetries such that the spacetime coordinates can be reconstructed and the particular form of the real space-momentum commutator remains covariant. Eventually feasible experiments, for which the nonlinear Lorentz dilatation effects here pointed out may be detectable, are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to general relativity, the interaction of a matter field with gravitation requires the simultaneous introduction of a tetrad field, which is a field related to translations, and a spin connection, which is a field assuming values in the Lie algebra of the Lorentz group. These two fields, however, are not independent. By analyzing the constraint between them, it is concluded that the relevant local symmetry group behind general relativity is provided by the Lorentz group. Furthermore, it is shown that the minimal coupling prescription obtained from the Lorentz covariant derivative coincides exactly with the usual coupling prescription of general relativity. Instead of the tetrad, therefore, the spin connection is to be considered as the fundamental field representing gravitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lorentz transformations are key to relativistic particles. In this work, we construct the Lorentz transformations in the coordinates of the light front, and we will derive from them the well-known time dilation and space contraction in these coordinates, with surprising novel factors. © 2013 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)