74 resultados para Locomotor activity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Caffeine is the legal stimulant consumed most extensively by the human world population and may be found eventually in the urine and/or blood of race horses, the fact that caffeine is in foods led us to determine the highest no-effect dose (HNED) of caffeine on the spontaneous locomotor activity of horses and then to quantify this substance in urine until it disappeared. We built two behavioural stalls equipped with juxtaposed photoelectric sensors that emit infrared beams that divide the stall into nine sectors in a 'tic-tac-toe' fashion. Each time a beam was interrupted by a leg of the horse, a pulse was generated; the pulses were counted at 5-min intervals and stored by a microcomputer. Environmental effects were minimized by installing exhaust fans producing white noise that obscured outside sounds. One-way observation windows prevented the animals from seeing outside. The sensors were turned on 45 min before drug administration (saline control or caffeine), the animals were observed for up to 8 h after i.v. administration of 2.0, 2.5, 3.0 or 5.0 mg caffeine kg(-1). The HNED of caffeine for stimulation of the spontaneous locomotor activity of horses was 2.0 mg kg(-1). The quantification of caffeine in urine and plasma samples was done by gradient HPLC with UV detection. The no-effect threshold should not be greater than 2.0 mug caffeine ml(-1) plasma or 5.0 mug caffeine ml(-1) urine. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
We examined nicotine-induced locomotion and increase in corticosterone plasma levels in adolescent and adult animals exposed to chronic restraint stress. Adolescent [postnatal day (P) 28-37] and adult (P60-67) rats were restrained for 2 hours once daily for 7 days. Three days after the last exposure to stress, the animals were challenged with saline or nicotine (0.4 mg/kg subcutaneously). Nicotine-induced locomotion was recorded in an activity cage. Trunk blood samples were collected in a subset of adolescent and adult rats and plasma corticosterone levels were determined by radioimmunoassay. Exposure to stress did not affect the nicotine-induced locomotor- or corticosterone-activating effects in both ages.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This report describes the development of a behaviour chamber and the validation of the chamber to measure locomotor activity of a horse, Locomotor activity was detected by four Mini-beam sensors and recorded on a data logger every 5 min for 22 h. Horses were more active during daytime than in the evening, which was at least partially related to human activity in their surroundings. To validate the ability of the chambers to detect changes in activity, fentanyl citrate and xylazine HCl, agents well-characterized as a stimulant and a depressant, respectively, were administered to five horses. Fentanyl citrate (0.016 mg/kg) significantly increased locomotor activity which persisted for 30 min, Xylazine HCl (1 mg/kg) significantly reduced locomotor activity for 90 min. Amitraz produced a dose-dependent decrease in locomotor activity, lasting 75 min for the 0.05 mg/kg dose, 120 min for the 0.10 mg/kg dose, and 180 min for the 0.15 mg/kg dose, In a separate experiment, yohimbine administration immediately reversed the sedative effect of amitraz, This suggests there is a similarity in the mode of action of amitraz, xylazine and detomidine, as yohimbine acts primarily by blocking central alpha 2-adrenoceptors that are stimulated by agents like xylazine, There was also a significant decrease in locomotor activity following injection of detomidine (0.02, 0.04 and 0.08 mg/kg) for 1.5, 3.5 and 5.0 h, respectively, the locomotor chamber is a useful, sensitive and highly reproducible tool for measuring spontaneous locomotor activity in the horse, which allows investigators to determine an agent's average time of onset, duration and intensity of effect on movement.
Resumo:
Objective-To investigate spontaneous locomotor activity (SLA) and antinociceptive effects of buprenorphine in horses.Animals-6 healthy adult horses.Procedures-Horses received each of 3 treatments (10 mL of saline [0.9% NaCl] solution, 5 mu g of buprenorphine/kg, or 10 mu g of buprenorphine/kg). Treatments were administered IV Order of treatments was randomized, and there was a 10-day interval between subsequent treatments. Spontaneous locomotor activity was investigated in a behavioral box by use of infrared photoelectric sensors connected to a computer, which detected movement of each horse. Antinociceptive effect was investigated by hoof-withdrawal reflex latency (HWRL) and skin-twitching reflex latency (STBL) after painful stimulation with a heat lamp.Results-Moderate excitement was observed in all horses from 5 to 10 minutes after the administration of both dosages of buprenorphine. The SLA increased significantly for 6 and 14 hours after IV administration of 5 and 10 mu g of buprenorphine/kg, respectively. Values for HWRL increased significantly only at 30 minutes after injection of 5 mu g of buprenorphine/kg, whereas STRL and HWRL each increased significantly from 1 to 6 hours (except at 2 and 4 hours) and 11 hours, respectively, after injection of 10 mu g of buprenorphine/kg.Conclusions and Clinical Relevance-IV injection of buprenorphine caused a dose-dependent increase in SLA, but only the dose of 10 mu g/kg induced analgesia on the basis of results for the experimental method used.
Resumo:
Locomotion is central to behavior and intrinsic to many fitnesscritical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from postural costs (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S males might partly explain the apparent selection limit for wheel running observed for over 15 generations. © 2009 by The University of Chicago. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anuran amphibians exhibit different patterns of energy substrate utilization that correlate with the intensity of vocal and locomotor activities. Given the remarkable differences among species in breeding and feeding strategies, and the different ways energy is used in the whole animal, the suggested correlations between calling and locomotor behavior and the level of energy substrates in the muscles responsible for such activities are more complex than previously reported. We explored the relationships between calling and locomotor behavior and energy supply to trunk and hindlimb muscles, respectively, within the ecologically diverse tree-frog genus Scinax. Specifically, we measured the relative amount of carbohydrates and lipids in these two groups of muscles, and in the liver of three species of Scinax that differ in vocal and locomotor performance, and compared our results with those of two other species for which comparable data are available. We also compared the contents of lipids and carbohydrates of conspecific males collected at the beginning and after 4 h of calling activity. The stomach content to potential feeding opportunities across species was also assessed in both groups of males. Scinax hiemalis and S. rizibilis exhibit comparatively low and episodic calling during long periods of activity whereas S. crospedospilus calls at higher rates over shorter periods. Male S. hiemalis had highest levels of trunk muscle glycogen followed by those of S. rizilbilis and S. crospedospilus, respectively. There was no correlation between total lipid content in trunk muscle and calling rate among different species, suggesting that other metabolic aspects may be responsible for the energetic support for vocal activity. The levels of lipids and carbohydrates in trunk and hindlimb muscles and liver of males collected at the beginning and 4 h into the calling period were similar across species, so the extent of energetic reserves does not appear to constrain vocal or locomotor activity. Finally, we found exceptionally high levels of carbohydrates and lipids in the liver of S. rizibilis, a trait perhaps related to a long and demanding breeding period.
Resumo:
In the present investigation the locomotor and the metabolic activity of Gymnostreptus olivaceus were studied, using 24-hr cycles at different photoperiods and constant temperature and RH. Locomotor activity was studied by the actography method and was reported as coefficients of nocturnalism [CN (N/N + D). 100]. The results showed a nocturnalism coefficient of 98,71% under normal photoperiod conditions and of 29,58% under inverted photoperiod conditions. In constant illumination, the CN of G. olivaceus was 88,22%, and in constant darkness, its rhythm was close to that of the normal photoperiod (CN = 94,92%). The metabolic activity was studied by manometric Warburg respirometry and lit was reported as mu l O-2 . g(-1). h(-1). The respiratory rate of G. olivaceus under normal photoperiod condition was higher at night than during the day (52,52 x 28,76), coinciding with the pattern of nocturnal locomotor activity of the animal. However, under conditions of inverted photoperiod, the millipede maintained its tendency toward a more intense nocturnal respiratory rate (50,35 x 39,14). Similar behaviours were observed under constant illumination and constant darkness, in which G. olivaceus again presented higher nocturnal respiratory rates than diurnal ones(85,84 x 53,48 and 73,18 x 57,0, respectively). The present experimental data suggests the persistence of an endogenous rhythm where the light may not be an important exogenous synchronizer of the activity of G. olivaceus, because it was insufficient to block the start of the biological clock and the natural tendency of higher nocturnal activities of millipedes, principally when the tests were performed in constant illumination or darkness (free-running tests).
Resumo:
The effects of serum and brain calcium concentration on rat behavior were tested by maintaining animals on either distilled water (N = 60) or water containing 1% calcium gluconate (N = 60) for 3 days. Animals that were maintained on high calcium drinking water presented increased serum calcium levels (control = 10.12 ± 0.46 vs calcium treated = 11.62 ± 0.51 µg/dl). Increase of brain calcium levels was not statistically significant. In the behavioral experiments each rat was used for only one test. Rats that were maintained on high calcium drinking water showed increased open-field behavior of ambulation (20.68%) and rearing (64.57%). on the hole-board, calcium-supplemented animals showed increased head-dip (67%) and head-dipping (126%), suggesting increased ambulatory and exploratory behavior. The time of social interaction was normal in animals maintained on drinking water containing added calcium. Rats supplemented with calcium and submitted to elevated plus-maze tests showed a normal status of anxiety and elevated locomotor activity. We conclude that elevated levels of calcium enhance motor and exploratory behavior of rats without inducing other behavioral alterations. These data suggest the need for a more detailed analysis of several current proposals for the use of calcium therapy in humans, for example in altered blood pressure states, bone mineral metabolism disorders in the elderly, hypocalcemic states, and athletic activities.
Resumo:
Cocaine is one of the most widespread illegal stimulants utilized by the human population throughout the world. The aim of this study was to establish the highest no-effect dose (HNED) of cocaine on the spontaneous locomotor activity (SLA) of horses in a behavior chamber, and thereby to determine the maximal acceptable threshold of the urinary drug concentration in horses. Twelve English thoroughbred mares received 0.02, 0.03, 0.04, 0.08 or 0.12 mg kg(-1) cocaine i.v. or saline solution (control). It was noted that doses above 0.04 mg kg(-1) induced a significant increase in SLA (P < 0.05, Tukey's test). No significant increase in SLA was seen in the mares that received 0.03 mg kg(-1), but the animals showed important behavioral changes that did not occur after the 0.02 mg kg(-1) dose. It was concluded that the HNED of cocaine for horses in a behavior chamber is 0.02 mg kg(-1). After injection of this dose in five horses, urine samples were collected at predetermined intervals through vesical catheterization. The concentrations of cocaine, norcocaine, benzoylecgonine and ecgonine methyl ester were quantified by liquid chromatography/electrospray ionization tandem mass spectrometry. Cocaine and norcocaine concentrations remained consistently below the level of detection. Benzoylecgonine reached a mean (+/- SEM) maximum concentration of 531.9 +/- 168.7 ng ml(-1) after 4 h, whereas ecgonine methyl ester peaked 2 h after injection at a concentration of 97.2 +/- 26.5 ng ml(-1). The maximum admissible concentration for cocaine and/or metabolites in the urine of horses is difficult to establish unequivocally because of the substantial individual variation in the drug elimination pattern observed in horses, which can be inferred by the large standard error of the means obtained. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Os efeitos sedativos e antinociceptivos da levomepromazina, azaperone e midazolam foram avaliados utilizando-se três testes de comportamento em ratos e camundongos. No teste da atividade locomotora espontânea em campo aberto observou-se que tanto o comportamento exploratório como a atividade locomotora espontânea foram significativamente diminuídos quando se utilizou levomepromazina e azaperone. O efeito causado pelo azaperone foi menos prolongado quando comparado ao da levomepromazina. O midazolam causou diminuição do comportamento exploratório sem alterar a atividade locomotora espontânea. Quando se avaliou o efeito antinociceptivo por meio da latência para o reflexo da retirada da cauda em ratos após estímulo doloroso, as drogas não apresentaram nenhum efeito antinociceptivo observável. No teste das contorções em camundongos, os fármacos foram capazes de abolir as contorções quando comparados ao efeito do grupo-controle. Levomepromazina, azaperone e midazolam nas doses utilizadas foram capazes de inibir o comportamento exploratório de ratos, comprovando seus efeitos sedativos. Com relação aos efeitos antinociceptivos para dor visceral, eles foram capazes de inibir as contorções.
Differential behavioral and neuroendocrine effects of repeated nicotine in adolescent and adult rats
Resumo:
Despite the high prevalence of tobacco abuse among adolescents, the neurobiology of nicotine addiction has been studied mainly in adult animals. Repeated administration of this drug to adult rats induces behavioral sensitization. Nicotine activates the HPA axis in adult rats as measured by drug-induced increases in ACTH and corticosterone. Both behavioral sensitization and corticosterone are implicated in drug addiction. We examined the expression of behavioral sensitization induced by nicotine as well as the changes in corticosterone levels after repeated injections of nicotine in adolescent and adult animals. Adolescent and adult rats received subcutaneous (s.c.) injections of saline or 0.4 mg/kg of nicotine once daily for 7 days. Three days after the last injection animals were challenged with saline or nicotine (0.4 mg/kg; s.c.). Nicotine-induced locomotion was recorded in an activity cage. Trunk blood samples were collected in a subset of adolescent and adult rats and plasma corticosterone levels were determined by radioimmunoassay. Adult, but not adolescent, rats expressed behavioral sensitization. Pretreatment with nicotine abolished corticosterone-activating effect of this drug only in adult animals, indicating the development of tolerance at this age. Our results provide evidence that adolescent rats exposed to repeated nicotine display behavioral and neuroendocrine adaptations distinct from that observed in adult animals. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Organisms are constantly subjected to stressful stimuli that affect numerous physiological processes and activate the hypothalamo-pituitary-adrenal (HPA) axis, increasing the release of glucocorticoids. Exposure to chronic stress is known to alter basic mechanisms of the stress response. The purpose of the present study was to compare the effect of two different stress paradigms (chronic restraint or variable stress) on behavioral and corticosterone release to a subsequent exposure to stressors. Considering that the HPA axis might respond differently when it is challenged with a novel or a familiar stressor we investigated the changes in the corticosterone levels following the exposure to two stressors: restraint (familiar stress) or forced novelty (novel stress). The changes in the behavioral response were evaluated by measuring the locomotor response to a novel environment. In addition, we examined changes in body, adrenals, and thymus weights in response to the chronic paradigms. Our results showed that exposure to chronic variable stress increased basal plasma corticosterone levels and that both, chronic restraint and variable stresses, promote higher corticosterone levels in response to a novel environment, but not to a challenge restraint stress, as compared to the control (non-stressed) group. Exposure to chronic restraint leads to increased novelty-induced locomotor activity. Furthermore, only the exposure to variable stress reduced body weights. In conclusion, the present results provide additional evidence on how chronic stress affects the organism physiology and point to the importance of the chronic paradigm and challenge stress on the behavioral and hormonal adaptations induced by chronic stress. (c) 2006 Elsevier B.V. All rights reserved.