42 resultados para Locomotive boilers.

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O ferrageamento corretivo é um método comumente ma Dvideow. O nível de significância adotado foi de 5%. No utilizado para alterar o padrão do andamento dos animais, presente estudo, não houve diferença significativa entre os assim como na terapêutica de diversas afecções do siste-dias avaliados, a elevação em seis graus da pinça ou talões ma locomotor dos equinos. No entanto, não existem, até não gerou desconforto durante a passada, portanto, os ani o momento, estudos científicos que revelem o período de mais podem retornar às atividades regulares de exercício e adaptação do andamento dos animais a este tipo de in-treinamento imediatamente após o ferrageamento. tervenção.O objetivo deste estudo foi avaliar o período de adaptação à ferraduras com elevação em seis graus da pinça ou talões em equinos caminhando em esteira rolante. O período de adaptação à ferradura foi avaliado nos tempos 0, 48 e 96 horas após cada tipo de ferrageamento proposto. Os animais foram gravados caminhando em esteira rolante. O comprimento da passada e a análise qualitativa do andamento foram realizados com o auxílio do programa Dvideow. O nível de significância adotado foi de 5%. No presente estudo, não houve diferença significativa entre os dias avaliados, a elevação em seis graus da pinça ou talões não gerou desconforto durante a passada, portanto, os animais podem retornar às atividades regulares de exercício e treinamento imediatamente após o ferrageamento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 degrees C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uma técnica para restituir a anatomia acetabular com aprofundamento da cavidade acetabular e reconstrução do ligamento da cabeça do fêmur e da cápsula articular, foi testada em nove cães, de raças de grande porte, portadores de displasia coxofemoral grave com subluxação acentuada ou luxação. O procedimento cirúrgico foi constituído de duas fases. Inicialmente, foi realizada a pectineotomia bilateral em todos os cães. A segunda intervenção nos mesmos cães incluiu abordagem e aprofundamento do acetábulo, reconstrução do ligamento da cabeça do fêmur e da cápsula. em geral, 30 dias após a cirurgia, os cães apoiavam o membro operado para se locomover. Com exceção de dois cães, todos os outros recuperaram a função locomotora do membro pélvico dentro de 60-90 dias. É concluído que a técnica de acetabuloplastia é uma boa alternativa para o tratamento da displasia coxofemoral grave.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, thermodynamic and economic analyses are applied to a Brazilian thermal power plant operating with natural gas. The analyses are performed in two cases: the current configuration and the future configuration. The current configuration is constituted by four gas turbines which operate in open cycle. The future configuration is obtained by a plant repowering by addition of four recovery boilers, two steam turbines and others equipment and accessories necessary to operate in combined cycle. In order to obtain the performance parameters, energetic and exergetic analyses for each case considered are carried out. on the other hand, thermoeconomic analysis provides means to evaluate the influences of the capital and fuel costs in the composition of the electricity costs. Techniques of investment analysis are also applied to the new configuration and from the results obtained it is possible to verify the advantages of the modifications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In industrial processes using aqueous solutions, corrosion of metal surfaces may occur at various locations. Much of the damage to steam generators and boilers is caused by corrosion. Dissolved oxygen in water is one of the most potent corrosion-causing factors, and therefore oxygen should be eliminated from steam-generating systems' feedwater. Chemical reduction, by reagents such as hydrazine or organic compounds, generally is used for the deoxygenation of water. This article reviews the major oxygen scavengers currently available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a thermoeconomic analysis method based on the First and the Second Law of Thermodynamics and applied to analyse the replacement of an equipment of a cogeneration system is presented. The cogeneration system consists of a gas turbine linked to a waste boiler. The electrical demand of the campus is approximately 9 MW but the cogen system generates approximately one third of the university requirement as well as 1.764 kg/s of saturated steam (at 0.861 MPa), approximately, from a single fuel source. The energy-economic study showed that the best system, based on pay-back period and based on the maximum savings (in 10 years), was the system that used the gas turbine M1T-06 of Kawasaki Heavy Industries and the system that used the gas turbine CCS7 of Hitachi Zosen, respectively. The exergy-economic study showed that the best system, which has the lowest EMC, was the system that used the gas turbine ASE50 of Allied Signal. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil produced in 2002/03 season 317.87×106tons of sugar cane stalks and 36.88×106tons of vegetal residues (green leaves, dry leaves and tops) in a planted area of 4.61×106 hectares (ha). These residues have a useful heat of 3,613.14Mcal.t-1. Currently most of this biomass is burned as a pre-harvest practice. The doubt persists in the system type that it must be adopted to pick up, load, transport and unload this biomass at the sugar mill boilers. This study analyzed 22 variables related to operational costs and physical characteristics of these residues in a field situation using a JOHN DEERE® 6850 forage harvester with two different treatments: T1 and T2 (two types of rakes) with 6 repetitions each one. The geographic location of the studied area that belongs to COSTA PINTO MILL (COSAN® Group) is: Latitude 22°40'30S and Longitude 47°36'38W. The adopted methodology was proposed by Ripoli et al. (2002). The obtained results at a 5% level of significance showed that both treatments did not differed significantly between them. Some of the results were, where EBP stands for Oil Equivalent Barrel: Windrowing (T1=US$0.17.EBP-1 and US$9.59.ha-1, T2=US$0.08.EBP-1 and US$4.27.ha-1); Pick up (T1=US$1.31.EBP-1 and US$44.29.ha-1, T2 =US$1.37.EBP-1 and US$48.36.ha-1); Transportation (T1=US$1.27.EBP-1 and US$14,30.ha -1, T2=US$1.33.EBP-1 and US$14,80.ha -1), Unloading at the sugar mill (T1=US$0.30.EBP-1 and US$3.39.ha-1, T2=US$0.32.EBP-1 and US$3.51.ha-1); Total (T1=US$3.05.EBP-1 and US$71.57.ha-1, T2=US$3.10.EBP-1 and US$70.94.ha-1). Confronting the obtained data with the ones in the bibliography, this system revealed itself more expensive than the baling system or the integral harvest system using combines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new techniques that allow the analysis and optimization of energy systems bearing in mind environmental issues is indispensable in a world with finite natural resources and growing demand of energy. Among the energy systems that deserve special attention, cogeneration in the sugar industry must be pointed out, because it uses efficiently a common fuel for generation of useful heat and power. Within this frame, thermoeconomical optimization - 2nd Law of Thermodynamics analysis by exergy function and economic evaluation of the thermal system - gradually is taking importance as a powerful tool to assist to the decision making process. Also, the explicit consideration of environmental issues offers a better way to explore trade-offs between different aspects to support the decisions that must be made. In this work it is used the technique of Life Cycle Analysis (LCA) which allows to consider environmental matters as an integral part of the problem, in opposite to most of the environmental approaches that only reduce residuals generation , without taking into account impacts associated to other related processes. On the other hand, the consideration of environmental issues in optimization of energy systems is a novel and promissory contribution in the state of the art of energy optimization and LCA. The system under study is a sugar plant of Tucumán (Argentina) given the particular importance that this industry had inside the regional economy of the Argentinean Northwest. Although cogeneration comes being used a while ago in sugar industry, being the main objective the generation of heat and as secondary objective the electric power generation and mechanic power to cover several needs of working machineries, to the date it is no available a versatile tool that allows to analyze economical feasible alternatives bearing in mind environmental issues. At sugar plants, steam is generated in boilers using as fuel bagasse - cellulosic fiber waste obtained crushing the sugar cane- and it is used to give useful heat and shaft work to the plant, but it can also be used to generate electricity with export opportunities to the electrical network. The great number of process alternatives outlines a serious decision making problem in order to take advantage of the resources. Although the problem turns out to be a mixed non-linear problem (MINLP), the main contribution of this work is the development of a hybrid strategy to evaluate cogeneration alternatives that combines optimization approaches with environmental indicators. This powerful tool for its versatility and robustness to analyze cogeneration systems, will be of great help in the decision making process, because of their easy implementation to analyze the kind of problems presented in the sugar industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO 2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol. © 2011 Ceramic Society of Japan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Artes - IA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Sociais - FFC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS