2 resultados para Local algebras

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of the classification of the extensions of the Virasoro algebra is discussed. It is shown that all H-reduced G(r)-current algebras belong to one of the following basic algebraic structures: local quadratic W-algebras, rational U-algebras, nonlocal W-algebras, nonlocal quadratic WV-algebras and rational nonlocal UV-algebras. The main new features of the quantum Ir-algebras and their heighest weight representations are demonstrated on the example of the quantum V-3((1,1))-algebra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implicit ODE, cubic in derivative, generically has no infinitesimal symmetries even at regular points with distinct roots. Cartan showed that at regular points, ODEs with hexagonal 3-web of solutions have symmetry algebras of the maximal possible dimension 3. At singular points such a web can lose all its symmetries. In this paper we study hexagonal 3-webs having at least one infinitesimal symmetry at singular points. In particular, we establish sufficient conditions for the existence of non-trivial symmetries and show that under natural assumptions such a symmetry is semi-simple, i.e. is a scaling in some coordinates. Using the obtained results, we provide a complete classification of hexagonal singular 3-web germs in the complex plane, satisfying the following two conditions: 1) the Chern connection form is holomorphic at the singular point, 2) the web admits at least one infinitesimal symmetry at this point. As a by-product, a classification of hexagonal weighted homogeneous 3-webs is obtained.