3 resultados para Lipped Channel Beams
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Cold-formed steel members are subject to failure caused by buckling, normally under loads smaller than those corresponding to partial or total yielding of the cross section. The buckling of members in bending can be classified as local or global, and the occurrence of one or the other type is expected by the members' geometric characteristics and by the constraints and load conditions. One of the local instability modes that can characterize a member's failure is distortional buckling of the cross section occurring on its own plane and involving lateral displacements and rotations. This paper presents and discusses the procedures and results obtained from experimental tests of cold-formed steel members under bending. Forty-eight beams were carried out on members in simple lipped channel, in pairs, with 6-meter spans and loads applied by concentrated forces at every 1/3 of the span. The thickness, width and dimensions, of the stiffeners were chosen so that the instability by distortion buckling of the cross section was the principal failure mode expected. The experimental results are compared with the obtained results by using the direct strength method.
Resumo:
Cold-formed steel shapes have been widely employed in steel construction, where they frequently offer a lower cost solution than do traditional laminated shapes. A classic application of cold-formed steel shapes is purlins in the roof panel of industrial buildings, connected to the roof panel by means of screws. The combined effect of these two elements has been the subject of investigations in some countries. Design criteria were included in the AISI Code in 1991 and 1996. This paper presents and discusses the results obtained from bending tests carried out on shapes commonly used in Brazil, i.e., the channel and the simple lipped channel, Tests were carried out on double shapes with 4.5 and 6.0 meter spans, which were subjected to concentrated loads and braced against each other on the supports and at intermediary points in three different load situations. The panel shape was also analyzed experimentally, simulating the action of wind by means of a vacuum box designed specifically for this purpose. The test results were then compared to those obtained through the theoretical analysis, enabling us to extract important information upon which to base proposed design criteria for the new Brazilian code.
Resumo:
Pós-graduação em Engenharia Civil - FEIS