66 resultados para Limit State Functions
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of the work is to study the existence and nonexistence of shock wave solutions for the Burger equations. The study is developed in the context of Colombeau's theory of generalized functions (GFs). This study uses the equality in the strict sense and the weak equality of GFs. The shock wave solutions are given in terms of GFs that have the Heaviside function, in x and ( x, t) variables, as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function, in R-n and R-n x R, in the distributional limit sense.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present the first record of Dendropsophus melanargyreus for the state of São Paulo and a distribution map for this species. This new record represents the southeastern limit of distribution, which is 106 Km from the nearest locality previously recorded for this species and is the fourth new register of anuran to northwestern region of São Paulo in the last two years, increasing species list of the region from 33 to 36 species. This results evidence the importance of this region as priority area for inventory.
Resumo:
The usefulness of a scale-independent approach to identify Efimov states in three-body systems is shown by comparing such an approach with a realistic calculation in the case of three helium atoms. We show that the scaling limit is realized in practice in this case, and suggest its application to study other similar systems, including the case where two kinds of atoms are mixed. We also consider the observed large scattering length of the Rb-87 dimer to estimate the critical value of the ground-state energy of the corresponding trimer (greater than or equal to 1.5 mK), in order to allow for one Efimov state above the ground state.
Resumo:
We discuss the asymptotic properties of quantum states density for fundamental p-branes which can yield a microscopic interpretation of the thermodynamic quantities in M-theory. The matching of the BPS part of spectrum for superstring and supermembrane gives the possibility of getting membrane's results via string calculations. In the weak coupling limit of M-theory, the critical behavior coincides with the first-order phase transition in the standard string theory at temperature less than the Hagedorn's temperature T-H. The critical temperature at large coupling constant is computed by considering M-theory on manifold with topology R-9 circle times T-2. Alternatively we argue that any finite temperature can be introduced in the framework of membrane thermodynamics.
Resumo:
The Gross-Pitaevskii equation for a Bose-Einstein condensate confined in an elongated cigar-shaped trap is reduced to an effective system of nonlinear equations depending on only one space coordinate along the trap axis. The radial distribution of the condensate density and its radial velocity are approximated by Gaussian functions with real and imaginary exponents, respectively, with parameters depending on the axial coordinate and time. The effective one-dimensional system is applied to a description of the ground state of the condensate, to dark and bright solitons, to the sound and radial compression waves propagating in a dense condensate, and to weakly nonlinear waves in repulsive condensate. In the low-density limit our results reproduce the known formulas. In the high-density case our description of solitons goes beyond the standard approach based on the nonlinear Schrodinger equation. The dispersion relations for the sound and radial compression waves are obtained in a wide region of values of the condensate density. The Korteweg-de Vries equation for weakly nonlinear waves is derived and the existence of bright solitons on a constant background is predicted for a dense enough condensate with a repulsive interaction between the atoms.
Resumo:
The simultaneous investigation of the pion electromagnetic form factor in the space- and timelike regions within a light-front model allows one to address the issue of nonvalence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector-meson-dominance model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 (GeV/c)(2), while in timelike region the model produces reasonable results up to 10 (GeV/c)(2).