82 resultados para Limestone and cover of soil
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The fragmentation of forest habitats in urban areas has aroused increasing interest in recent years according to the growing environmental problems. The fragmentation of theses ecosystems is caused, in general, by the pressure of housing, agriculture and industry, causing losses in biodiversity and problems of soil degradation in the border areas of theses remnants. The establishment of indicators of soil degradation becomes essential for the implementation of conservation and reclamation. This study analyzes physical and chemical characteristics of soil under different forms of vegetation in the forest surrounding the Quilombo Forest, located in Campinas/SP - Brazil, and examines the possibility of using these indices as indicators of environmental degradation in urban remnants. The parameters analyzed were: specific weight natural (γn), specific weight of solids (γs) Ca, P, K, Mg, pH, organic matter, H + Al, Sum of Base (SB) Percent Base Saturation (V%), Cation Exchange Capacity (CEC). The study shows that in general the different forms of land used in the study area significantly changed (or according to) the physical aspects of soil The porosity and voids of the soil stood out as the best indicators of soil physical degradation in the layer 0-20 cm deep. In relation to chemical indices, the soil under the cultivation of cane sugar had a significantly higher pH, K, Ca, Mg and sum of bases. The areas of forest showed higher levels of phosphorus, organic matter and CEC, indicating the importance of maintaining vegetation and replacement for the cycling of organic matter.
Resumo:
Objetivou-se avaliar os efeitos de nitrogênio (0, 100, 200, 300 e 400 kg/ha.ano), com ou sem aplicação de calcário dolomítico em cobertura, sobre o teor de potássio (K) do solo nas profundidades de 0 a 5; 5 a 10; e 10 a 20 cm e a concentração de potássio na planta. O experimento foi realizado em Latossolo Vermelho distroférrico de relevo suavemente ondulado, disposto em esquema fatorial 5 × 2, em blocos casualizados, com quatro repetições. A adubação nitrogenada promoveu aumento linear na concentração de potássio na planta e no teor desse mineral na camada de 0 a 5 cm do solo. Ocorreu efeito de inibição competitiva entre a absorção de potássio e cálcio e entre potássio e magnésio. Embora uma fração significativa de potássio retorne à camada superficial do solo pelo resíduo de forragem, em decorrência da maior produção de massa, o aumento da concentração de potássio na planta nas mais altas doses de nitrogênio comprova a importância do suprimento de potássio para a planta, por intensificar a massa de forragem.
Resumo:
A good cover crop should have a vigorous early development and a high potential for nutrient uptake that can be made available to the next crop. In tropical areas with relatively dry winters drought tolerance is also very important. An experiment was conducted to evaluate the early development and nutrition of six species used as cover crops as affected by sub-superficial compaction of the soil. The plants (oats, pigeon pea, pearl millet, black mucuna, grain sorghum, and blue lupin) were grown in pots filled with soil subjected to different subsurface compaction levels (bulk densities of 1.12, 1.16, and 1.60 mg m(-3)) for 39 days. The pots had an internal diameter of 10 cm and were 33.5 cm deep. Grasses were more sensitive to soil compaction than leguminous plants during the initial development. Irrespective of compaction rates, pearl millet and grain sorghum were more efficient in recycling nutrients. These two species proved to be more appropriate as cover crops in tropical regions with dry winters, especially if planted shortly before spring.
Resumo:
Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.
Resumo:
High soil acidity influences the availability of mineral nutrients and increases that of toxic aluminium (Al), which has a jeopardizing effect on plant growth. The objective of this research was to evaluate the effects of soil liming on the development of guava (Psidium guajava L.) plants, on soil chemical characteristics, and on fruit yield. The experiment was carried out at the Bebedouro Citrus Experimental Station, state of São Paulo, Brazil, in a Typic Hapludox soil, from August 1999 to March 2003. The treatments consisted of limestone dose: D0 = zero; D1 = half dose; D2 = total dose; D3 = 1.5 times the dose, and D4 = 2 times the dose to raise the V value to 70%. The doses corresponded to zero, 1.85, 3.71, 5.56, and 7.41tha(-1) applied to the upper soil layer (0-30cm deep) before planting. The results showed that liming caused an improvement in the evaluated soil chemical characteristics up to a depth of 60cm in soil samples both in the line and between lines. The highest fruit yields were obtained when the base saturation reached a value of 55% in the line and 62% between the lines. Foliar levels of calcium (Ca) and magnesium (Mg) were 8.8 and 2.5gkg-1, respectively. The highest limestone dose maintained the soil base saturation (at the layer of 0-20cm) in the line close to 55% during at least 40 months after the incorporation of limestone.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work was to observe the interaction between soil moisture and irrigation time intervals on the germination of sugarcane cv. RB785148 sets in semi-controlled conditions. One-bud sets of the variety RB785148 were germinated in ceramic pots filled with soil under a transparent PVC cover using soil humidity levels of 22, 25 and 30%, that were restored at intervals of 7, 14 and 21 days. The experiment was carried out at three different periods of the year: May-June/94; Oct.-Nov./94; and Mar.-Apr./95. The results indicate that the germination decreased mainly in function of the decrease in soil humidity, whereas irrigation interval have no statistical effect on germination. An interaction between humidity level and irrigation interval was observed. A variation of the timecourse of the germination could be observed when the results of the experiments installed at different dates were compared.
Resumo:
The objective of this work was to evaluate the efficiency of superficial applicationof limestone and slag, and their effects on soil chemical attributes and on yield and mineral nutrition of soybean, maize, and Congo signal grass (Urochloa ruziziensis). The experiment was carried out in a Rhodic Hapludox under no tillage system. The treatments consisted of the use of limestone or slag (silicates of calcium and magnesium) to correct soilacidity, and of a control treatment without the use of soil correctives. Rates were calculated in order to raise soil base saturation up to 70%. Soybean was sown in November 2006and maize in December 2007. Congo signal grass was sown right after the harvests of soybean and maize, and it was cropped during the offseasons. Soil chemical attributes were evaluated at 6, 12, and 18 months after the application of the corrective materials. Slag isan efficient source for soil acidity correction, being able to raise the exchangeable base levels in the soil profile faster than lime. Both limestone and slag increase dry matter yield of Congo signal grass, and grain yield of soybean and maize. Slag is more effective in improving maize grain yield.
Resumo:
Fertilizer use in no-till systems must be aligned with a correct interpretation of soil chemical attributes and crop demands. The objectives of this work were evaluate the effects of pre-sowing application of ammonium sulfate (AS) and of cover crops on the yields and soil chemical attributes of no-till cotton (Gossypium hirsutum L. r. latifolium Hutch) over two harvesting years. The experiment was arranged in randomized complete block design, with the plots in strips, and the variables were three cover crops (Raphanus sativus L., Avena strigosa L. and Avena sativa L.) and four AS doses (0, 150, 300, and 450 kg ha-1) applied over millet dry biomass. The cotton in the experimental plots was manually harvested on April 25, 2007 and April 24, 2008. The soil samples were collected between cotton rows in all plots on May 5, 2007 and May 12, 2008, at depths of 0.0-0.05, 0.05-0.10, and 0.10-0.20 m for soil fertility analyses. The increasing doses of AS induced lower soil pH, and calcium (Ca) and magnesium (Mg) levels in the superficial soil layer, as well as higher exchangeable aluminum (Al) and sulfur (S) levels until a depth of 0.20 m. Seed cotton yields increased with increasing AS doses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper characterizes humic substances (HS) extracted from soil samples collected in the Rio Negro basin in the state of Amazonas, Brazil, particularly investigating their reduction capabilities towards Hg(II) in order to elucidate potential mercury cycling/volatilization in this environment. For this reason, a multimethod approach was used, consisting of both instrumental methods (elemental analysis, EPR, solid-state NMR, FIA combined with cold-vapor AAS of Hg(0)) and statistical methods such as principal component analysis (PCA) and a central composite factorial planning method. The HS under study were divided into groups, complexing and reducing ones, owing to different distribution of their functionalities. The main functionalities (cor)related with reduction of Hg(II) were phenolic, carboxylic and amide groups, while the groups related with complexation of Hg(II) were ethers, hydroxyls, aldehydes and ketones. The HS extracted from floodable regions of the Rio Negro basin presented a greater capacity to retain (to complex, to adsorb physically and/or chemically) Hg(II), while nonfloodable regions showed a greater capacity to reduce Hg(II), indicating that HS extracted from different types of regions contribute in different ways to the biogeochemical mercury cycle in the basin of the mid-Rio Negro, AM, Brazil. (c) 2007 Published by Elsevier B.V.