84 resultados para Lightning conductors
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This gaper demonstrates that artificial neural networks can be used effectively for estimation of parameters related to study of atmospheric conditions to high voltage substations design. Specifically, the neural networks are used to compute the variation of electrical field intensity and critical disruptive voltage in substations taking into account several atmospheric factors, such as pressure, temperature, humidity, so on. Examples of simulation of tests are presented to validate the proposed approach. The results that were obtained by experimental evidences and numerical simulations allowed the verification of the influence of the atmospheric conditions on design of substations concerning lightning.
Resumo:
This paper describes a novel approach for mapping lightning processes using fuzzy logic. The estimation process is carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work analyses the waveshapes of continuing currents and parameters of M-components in positive cloud-to-ground (CG) flashes through high-speed GPS synchronized videos. The dataset is composed of only long continuing currents (with duration longer than 40 ms) and was selected from more than 800 flashes recorded in Sao Jose dos Campos (45.864 degrees W, 23.215 degrees S) and Uruguaiana (29.806 degrees W, 57.005 degrees S) in Southeast and South of Brazil, respectively, during 2003 to 2007 summers. The videos are compared with data obtained by the Brazilian Lightning Location System (BrasilDAT) in order to determine the polarity of each flash and select only positive cases. There are only two studies of waveshapes of continuing currents in the literature. One is based on direct current measurements of triggered lightning, in which four different types of waveshapes were observed; and the other is based on measurements of luminosity variations in high-speed videos of CG negative lightning, in which besides the four types above mentioned two additional types were observed. The present work is an extension of the latter, using the same method but now applied to obtain the waveshapes of positive CG lightning. As far as the authors know, this is the first report on M-components in positive continuing currents. We also have used the luminosity-versus-time graphs to observe their occurrence and measure some parameters (duration, elapsed time and time between two successive M-components), whose statistics are presented and compared in detail to the data for negative flashes. We have plotted a histogram of the M-components elapsed time over the total duration of the continuing current for positive flashes, which presented an exponential decay (correlation coefficient: 0.83), similar to what has been observed for negative flashes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an alternative procedure to obtain an equivalent conductor from a bundled conductor, taking into account the distribution of the current in subcondutors of the bundle. Firstly, it is introduced a brief background about the concept of Geometric Mean Radius (GMR) and how this methodology is applied to define an equivalent conductor and its electric parameters. Emphasizing that the classical procedure, using GMR, is limited to premise which the current is equally distributed through subconductors. Afterwards, it is described the development of proposed method and applications for an equivalent conductor obtained from a conventional transmission line bundled conductor and from an equivalent conductor based on a bundle with compressed SF(6) insulation system, where the current is unequally distributed through subconductors.
Resumo:
This paper describes a novel approach for mapping lightning processes using fuzzy logic. The core regarding lightning process is to identify and to model those uncertain information on mathematical principles. In fact, the lightning process involves several nonlinear features that our current mathematical tools would not be able to model. The estimation process has been carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.
Resumo:
Alkaline metal doped organic - inorganic hybrids have potential applications in the field of portable energy sources. Attractive sol - gel derived urea cross-linked polyether, siloxane - PPO ( poly( propylene oxide)) hybrids doped with sodium salts ( NaClO4 and NaBF4) were examined by multi-spectroscopic approach that includes complex impedance, X-ray powder diffraction (XRPD), small angle X-ray scattering (SAXS), Si-29 and Na-23 magic-angle spinning nuclear magnetic resonance (NMR/MAS), Na K-edge X-ray absorption near edge structure (XANES) and Raman spectroscopies. The goals of this work were to determine which cation coordinating site of the host matrix ( ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the thermal and electrical properties. The main conclusion derived from this study is that the NaBF4 salt has a much lower solubility in the hybrid matrix than the NaClO4 salt. Furthermore, the addition of a large amount of salt plays a major role in the hybrid nanostructure and electrical properties, modifying the PPO chain conformation, weakening or breaking the hydrogen bond of the polyether - urea associations and changing the polycondensation and aggregation processes involving the siloxane species.
Resumo:
During the TROCCINOX field experiment in January and February 2005, the contribution of lightning-induced nitrogen oxides (LNOx) from tropical and subtropical thunderstorms in Southern Brazil was investigated. Airborne trace gas measurements (NO, NOy, CO and O-3) were performed up to 12.5 km with the German research aircraft Falcon. During anvil penetrations in selected tropical and subtropical thunderstorms of 4 and 18 February, NOx mixing ratios were on average enhanced by 0.7-1.2 and 0.2-0.8 nmol mol(-1) totally, respectively. The relative contributions of boundary layer NOx (BL-NOx) and LNOx to anvil-NOx were derived from the NOx-CO correlations. on average similar to 80-90% of the anvil-NOx was attributed to LNOx. A Lightning Location Network (LINET) was set up to monitor the local distribution of cloud-to-ground (CG) and intra-cloud (IC) radiation sources (here called 'strokes') and compared with lightning data from the operational Brazilian network RINDAT (Rede Integrada Nacional de Deteccao de Descargas Atmosfericas). The horizontal LNOx mass flux out of the anvil was determined from the mean LNOx mixing ratio, the horizontal outflow velocity and the size of the vertical cross-section of the anvil, and related to the number of strokes contributing to LNOx. The values of these parameters were derived from the airborne measurements, from lightning and radar observations, and from a trajectory analysis. The amount of LNOx produced per LINET stroke depending on measured peak current was determined. The results were scaled up with the Lightning Imaging Sensor (LIS) flash rate (44 flashes s(-1)) to obtain an estimate of the global LNOx production rate. The final results gave similar to 1 and similar to 2-3 kg(N) per LIS flash based on measurements in three tropical and one subtropical Brazilian thunderstorms, respectively, suggesting that tropical flashes may be less productive than subtropical ones. The equivalent mean annual global LNOx nitrogen mass production rate was estimated to be 1.6 and 3.1 Tg a(-1), respectively. By use of LINET observations in Germany in July 2005, a comparison with the lightning activity in mid-latitude thunderstorms was also performed. In general, the same frequency distribution of stroke peak currents as for tropical thunderstorms over Brazil was found. The different LNOx production rates per stroke in tropical thunderstorms compared with subtropical and mid-latitude thunderstorms seem to be related to the different stroke lengths (inferred from comparison with laboratory data and observed lengths). In comparison, the impact of other lightning parameters as stroke peak current and stroke release height was assessed to be minor. The results from TROCCINOX suggest that the different vertical wind shear may be responsible for the different stroke lengths.
Resumo:
This paper describes lightning characteristics as obtained in four sets of lightning measurements during recent field campaigns in different parts of the world from mid-latitudes to the tropics by the novel VLF/LF (very low frequency/low frequency) lightning detection network (LINET). The paper gives a general overview on the approach, and a synopsis of the statistical results for the observation periods as a whole and for one special day in each region. The focus is on the characteristics of lightning which can specifically be observed by this system like intra-cloud and cloud-to-ground stroke statistics, vertical distributions of intra-cloud strokes or peak current distributions. Some conclusions regarding lightning produced NOx are also presented as this was one of the aims of the tropical field campaigns TROCCINOX (Tropical Convection, Cirrus and Nitrogen Oxides Experiment) and TroCCiBras (Tropical Convection and Cirrus Experiment Brazil) in Brazil during January/February 2005, SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) and TWP-ICE (Tropical Warm Pool-International Cloud Experiment) during November/December 2005 and January/February 2006, respectively, in the Darwin area in N-Australia, and of AMMA (African Monsoon Multidisciplinary Analyses) in W-Africa during June-November 2006.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Lanthanum-lithium-sodium double chromates Li1-xNaxLa(CrO4)2 were prepared and analysed by means of admittance spectroscopy. Their a.c. conductivity parameters are correlated with structural details of high and low temperature forms of pure lanthanum-lithium double chromates. Lithium compounds show the lowest conductivity values and the highest activation energy for ion motion, while the sample Li0.5Na0.5La(CrO4)2 exhibits the highest conductivity 10-5 S cm-1 and the lowest activation energy 0.58 eV.
Resumo:
This paper describes a novel approach for mapping lightning models using artificial neural networks. The networks acts as identifier of structural features of the lightning models so that output parameters can be estimated and generalized from an input parameter set. Simulation examples are presented to validate the proposed approach. More specifically, the neural networks are used to compute electrical field intensity and critical disruptive voltage taking into account several atmospheric and structural factors, such as pressure, temperature, humidity, distance between phases, height of bus bars, and wave forms. A comparative analysis with other approaches is also provided to illustrate this new methodology.
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. © 2009 The Berkeley Electronic Press. All rights reserved.
Resumo:
Models of different degrees of complexity are found in the literature for the estimation of lightning striking distances and attractive radius of objects and structures. However, besides the oversimplifications of the physical nature of the lightning discharge on which most of them are based, till recently the tridimensional structure configuration could not be considered. This is an important limitation, as edges and other details of the object affect the electric field and, consequently, the upward leader initiation. Within this context, the Self-consistent leader initiation and propagation model (SLIM) proposed by Becerra and Cooray is state-of-the-art leader inception and propagation leader model based on the physics of leader discharges which enables the tridimensional geometry of the structure to be taken into account. In this paper, the model is used for estimating the striking distance and attractive radius of power transmission lines. The results are compared with those obtained from the electrogeometric and Eriksson's models. © 2003-2012 IEEE.