192 resultados para Light acclimation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photosynthetic characteristics in response to irradiance were analysed in 21 field and culture populations of thirteen freshwater red algal species applying two distinct techniques (chlorophyll fluorescence and oxygen evolution). Photosynthesis-irradiance (PI) curves indicated adaptations to low irradiances in all species analysed, essentially characterized by occurrence of photoinhibition, low values of the saturation parameter (I-k < 225 mu mol m(-2) s(-1)) and compensation irradiance (I-c < 20 mu mol m(-2) s(-1)) and relatively high values of the effective quantum yield of photosystem II (Delta F/F'(m) >= 45). These characteristics have been reported in freshwater red algae and were confirmed from data based on the two techniques, indicating they are typically shade-adapted plants. on the other hand, some species (e.g. Batrachospermum delicatulum) can tolerate high irradiances (up to 2400 mu mol m(-2) s(-1)), suggesting they have mechanisms that enable them to avoid photodarnage of the photosynthetic apparatus. One of these mechanisms is the increase in dissipation of excessive energy captured by reaction centres after exposure to continuous irradiance, as reflected by the non-photochemical quenching fluorescence parameter in dark/light induction curves. Photo-inhibition occurred in all algae tested by both techniques. Light acclimation was evident particularly in field populations, as revealed by lower values of the saturation parameter (Ik) and the compensation irradiance (I-c) and higher values of Delta F/F'(m) in algae under low irradiances (shaded or heavily shaded stream segments), and vice-versa. Forms living within the boundary layer (e.g. crusts), in a region of reduced current velocity, tended to be more shade-adapted than semi-erect plants (e.g. non-mucilaginous or mucilaginous filaments), as indicated by highest values of photosynthetic efficiency (alpha = 0.31) and effective quantum yield (Delta F/F'(m) = 0.88) under natural conditions. Higher photo- synthetic rates (P-max) for the same species or population were observed under culture than field conditions when measured with the oxygen evolution technique, whereas the opposite trend was observed using chlorophyll fluorescence. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosynthetic characteristics in response to irradiance were analysed in 42 populations of 33 macroalgal species by two distinct techniques (chlorophyll fluorescence and oxygen evolution). Photosynthesis-irradiance (PI) curves based on the two techniques indicated adaptations to low irradiance reflected by low saturation values, high to moderate values of photosynthetic efficiency (alpha) and photoinhibition (beta), for Bacillariophyta and Rhodophyta, which suggests they are typically shade-adapted algae. In contrast, most species of Chlorophyta were reported as sun adapted algae, characterized by high values of I-k and low of alpha, and lack of or low photoinhibition. Cyanophyta and Xanthophyta were intermediate groups in terms of light adaptations. Photoinhibition was observed in variable degrees in all algal groups, under field and laboratory conditions, which confirms that it is not artificially induced by experimental conditions, but is rather a common and natural phenomenon of the lotic macroalgae. Low values of compensation irradiance (I-c) were found, which indicate that these algae can keep an autotrophic metabolism even under very low irradiances. High ratios (>2) of photosynthesis/respiration were found in most algae, which indicates a considerable net gain. These two physiological characteristics suggest that macroalgae may be important primary producers in lotic ecosystems. Saturation parameters (I-k and I-s) occurred in a relatively narrow range of irradiances (100-400 mumol photons m(-2) s(-1)), with some exceptions (higher in some filamentous green algae or lower in red algae). These parameters were way below the irradiances measured at collecting sites for most algae, which means that most of the available light energy was not photochemically converted via photosynthesis. Acclimation to ambient PAR was observed, as revealed by lower values of I-k and I-c and higher values of alpha and quantum yield in algae from shaded streams, and vice versa. Forms living within the boundary layer (crusts) showed responses of shade-adapted species and had the highest values of P-max, alpha and quantum yield, whereas the opposite trend was observed in gelatinous forms (colonies and. laments). These results suggests adaptation to the light regime rather than functional attributes related to the growth form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nile tilapia fish were individually reared under similar light levels for 8 weeks under five colored light spectra (maximum wavelength absorbance): white (full light spectrum), blue (~452 nm), green (~516 nm), yellow (~520 nm) or red (~628 nm). The effects of light on feeding, latency to begin feeding, growth and feed conversion were measured during the last 4 weeks of the study (i.e., after acclimation). We found that red light stimulates feeding, as in humans, most likely by affecting central control centers, but the extra feeding is not converted into growth. © 2013 Volpato et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals show behavioral and physiological changes that emerge in response to environmental perturbations (i.e., emergency life-history stages). In this study, we investigate the effects of light intensity on aggressive encounters and social stability in groups of adult male Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). The study compared the behavior observed under low (280.75 ± 50.60 lx) and high (1394.14 ± 520.32 lx) light intensities, with 12 replicates for each treatment. Adult fish were isolated in 36-L aquaria for 96 hours, and three males were grouped for 11 days in 140-L aquaria. Agonistic behavior was video-recorded (10 min/day) on the 3rd, 5th, 7th, and 9th day to quantify aggressive interactions and social stability. There was an effect of light intensity and day of observation on the total number of agonistic behaviors performed by the fish group. Besides, increased frequency of aggressive interactions (the sum of the four sessions) by the alpha, beta and gamma fish occurred at the higher light intensity. The dominance ranks of the fish remained unchanged across the observation sessions under both the low and high light intensities. We concluded that enhanced light intensity has a cumulative effect that increases the aggressiveness of the Nile tilapia but that this effect is not sufficiently strong to destabilize the social hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gochnatia polymorpha (Less.) Cabrera é uma espécie de Asteraceae com ampla distribuição no bioma cerrado, sendo encontrada em diversas fisionomias florestais da região sudeste do Brasil. O presente estudo descreve alguns caracteres anatômicos foliares dessa espécie e os analisa quantitativamente em função de sua ocorrência nas formações florestais e também das diferenças de luminosidade. Foram encontradas diferenças quantitativas em todos os parâmetros anatômicos analisados. Os resultados demonstram que a alta plasticidade anatômica foliar nesta espécie pode ser considerada como uma vantagem adaptativa que a permite ocorrer em diversos ambientes do cerrado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical characterization of a high efficient multilayer polymer light emitting diode using poly[(2-methoxy-5-hexyloxy)-p-phenylenevinylene] as the emissive layer and an anionic fluorinated surfactant as the electron transport layer was performed. For the sake of comparison, a conventional single layer device was fabricated. The density current vs. voltage measurements revealed that the conventional device has a higher threshold voltage and lower current compared to the surfactant modified device. The effective barrier height for electron injection was suppressed. The influence of the interfaces and bulk contributions to the dc and high frequencies conductivities of the devices was also discussed. (c) 2006 Springer Science + Business Media, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) have been produced with Langmuir-Blodgett (LB) films from poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer and an ionomer of a copolymer of styrene and methylmethacrylate (PS/PMMA) as an electron-injection layer. The main features of such devices are the low operating voltages, obtainable firstly due to the good quality of the ultrathin LB films that allows PLEDs to be produced reproducibly and secondly due to the improved electrical and luminance properties brought by the electron-injection layer. Also demonstrated is the superior performance of an all-LB device compared to another one produced with cast films of the same materials. Published by Elsevier B.V.