6 resultados para Lattice construction

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let m and n be integers greater than 1. Given lattices A and B of dimensions m and n, respectively, a technique for constructing a lattice from them of dimension m+n-1 is introduced. Furthermore, if A and B possess bases satisfying certain conditions, then a second technique yields a lattice of dimension m+n-2. The relevant parameters of the new lattices are given in terms of the respective parameters of A,B, and a lattice C isometric to a sublattice of A and B. Denser sphere packings than previously known ones in dimensions 52, 68, 84, 248, 520, and 4098 are obtained. © 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let p be a prime, and let zeta(p) be a primitive p-th root of unity. The lattices in Craig's family are (p - 1)-dimensional and are geometrical representations of the integral Z[zeta(p)]-ideals < 1 - zeta(p)>(i), where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions p - 1 where 149 <= p <= 3001, Craig's lattices are the densest packings known. Motivated by this, we construct (p - 1)(q - 1)-dimensional lattices from the integral Z[zeta(pq)]-ideals < 1 - zeta(p)>(i) < 1 - zeta(q)>(j), where p and q are distinct primes and i and fare positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Known number theoretical constructions of the lattice E8 use the cyclotomic fields Q(ζ15), Q(ζ20), and Q(ζ24). In this work, an infinite family of Abelian number fields yielding rotated versions of the lattice E 8 is exhibited. © 2012 The Managing Editors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, minimum and non-minimum delay perfect codes were proposed for any channel of dimension n. Their construction appears in the literature as a subset of cyclic division algebras over Q(zeta(3)) only for the dimension n = 2(s)n(1), where s is an element of {0,1}, n(1) is odd and the signal constellations are isomorphic to Z[zeta(3)](n) In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over Q(zeta(3)), where the signal constellations are isomorphic to the hexagonal A(2)(n)-rotated lattice, for any channel of any dimension n such that gcd(n,3) = 1. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the coadjoint orbit method we derive a geometric WZWN action based on the extended two-loop Kac-Moody algebra. We show that under a hamiltonian reduction procedure, which respects conformal invariance, we obtain a hierarchy of Toda type field theories, which contain as submodels the Toda molecule and periodic Toda lattice theories. We also discuss the classical r-matrix and integrability properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over ℚ(ζ3), where the signal constellations are isomorphic to the hexagonal An 2 -rotated lattice, for any channel of any dimension n such that gcd{n, 3) = 1.