148 resultados para Lattice QCD
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this communication, we report results of three-dimensional hydrodynamic computations, by using equations of state with a critical end Point as suggested by the lattice QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region and a larger elliptic-flow parameter nu(2). We discuss also the effcts of the initial-condition fluctuations and the continuous emission.
Resumo:
The aim of this work is to implement the mechanism of link rearrangement predicted in the strong coupling limit of Hamiltonian lattice QCD - in a constituent quark model in which constituent quarks, links and junctions are the dominant degrees of freedom. The implications of link rearrangement for the meson-meson interaction are investigated.
Resumo:
We study the scaling of the S-3(1)-S-1(0) meson mass splitting and the pseudoscalar weak-decay constants with the mass of the meson, as seen in the available experimental data. We use an effective light-front QCD-inspired dynamical model regulated at short distances to describe the valence component of the pseudoscalar mesons. The experimentally known values of the mass splitting, decay constants (from global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c](2) are reasonably described by the model.
Resumo:
Spinodal decomposition in a model of pure-gauge SU(2) theory that incorporates a deconfinement phase transition is investigated by means of real-time lattice simulations of the fully nonlinear Ginzburg-Landau equation. Results are compared with a Glauber dynamical evolution using Monte Carlo simulations of pure-gauge lattice QCD. © 2005 American Institute of Physics.
Resumo:
Pós-graduação em Física - IFT
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the low-energy scattering of charmed (D) and strange (K) mesons by nucleons. The short-distance part of the interaction is due to quark-gluon interchanges derived from a model that realizes dynamical chiral symmetry breaking and confines color. The quark-gluon interaction incorporates a confining Coulomb-like potential extracted from lattice QCD simulations in Coulomb gauge and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The long-distance part of the interaction is due to single vector (rho, omega) and scalar (sigma) meson exchanges. We show results for scattering cross-sections for isospin I = 0 and I = 1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Effects of lattice-QCD-inspired equations of state and continuous emission on some observables are discussed, by solving a 3D hydrodynamics. The particle multiplicity as well ν 2 are found to increase in the mid-rapidity. We also discuss the effects of the initial-condition fluctuations. © 2006 American Institute of Physics.
Resumo:
We estimate the dissipation coefficient Γ that appears in Ginzburg-Landau-Langevin equations that describe phenomenologically the deconfinement transition in QCD. This is done through the implementation of Glauber dynamics of pure SU(3) lattice gauge theory. The coefficient Γ is extracted from the short-time exponential growth of the equal time correlation function of the order parameter. Although the absolute determination of Γ is ambiguous due to the difficulties in relating real time and Monte Carlo time, its relative temperature dependence can be obtained with much less arbitrariness. © 2007 American Institute of Physics.
Resumo:
We investigate the scattering of heavy-light K and D mesons by nucleons at low energies. The short-distance part of the interaction is described by quark-gluon interchange and the longdistance part is described by a one-meson-exchange model that includes the contributions of vector (ρ, ω) and scalar (σ) mesons. The microscopic quark model incorporates a confining Coulomb potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a theoretical framework that can be extended to finite temperatures and baryon densities. © 2010 American Institute of Physics.
Resumo:
Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)