5 resultados para Late Paleozic ice age
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A small and poorly diversified bivalve fauna from Taciba Formation, Itarare Group, Parana Basin (State of Santa Catarina, Mafra Municipality), is described in this paper for the first time, based on new findings. The fauna is recorded in a 30 cm thick interval of fine sandstone locally at the top of Taciba Formation, in the Butia quarry. The studied fossil-bearing sand-stone bed is a marine intercalation recording a brief eustatic rise in sea-level, probably following glacier retreat and climate amelioration at the end of a broad glacial scenario. The fauna is mainly dominated by productid brachiopods, which are not described here, and rare mollusk shells (bivalves and gastropods). Two bivalve species were identified: Myonia argentinensis (Harrington, 1955), and Aviculopecten multiscalptus (Thomas, 1928). The presence of Myonia argentinensis is note-worthy since this species is also present in the Baitaca assemblage found in marine siltstones (Baitaca assemblage) of the Rio do Sul Formation, cropping out at the Teixeira Soares region, Parana State. This species is also recorded in the bivalve fauna from the Bonete Formation, Pillahinco Group, Sauce Grande Basin, Buenos Aires Province, in Argentina. Hence, the marine bivalves of the Taciba Formation are associated with the transgressive event that characterizes the Eurydesma fauna, indicating a Late Asselian-Sakmarian age for the bivalve fauna. Presence of the Myonia argentinensis megadesmid species reinforces the Gondwanic nature of the studied fauna.
Resumo:
The integration of outcrop and subsurface information, including micropaleontological data, facies and sequence stratigraphic studies, and oxygen isotope analysis, allow us to present a new stratigraphic model for the Cretaceous continental deposits of the Bauru Group, Brazil. Thirty-eight fossil taxa were recovered from these deposits, including 29 species of ostracodes and 9 species of charophytes. Seven of these ostracode species and three subspecies are new and formally described here. The associations of Chara barbosai - Ilyocypris cf. riograndensis, found in the Adamantina Formation, and Amblyochara sp. - Neuquenocypris minor mineira nov. subsp., found in the Marília Formation. Ponte Alta Member, represent two distinct groups that are respectively Turonian-Santonian and Maastrichtian (probably Late Maastrichtian) in age. Therefore, a hiatus, encompassing more than 11 Ma, separates those two formations. From bottom to top, four depositional cycles were recognized in the Bauru Group in western São Paulo: cycles 1 and 2 belong to Caiuá Formation (fluvio-lacustrine and lacustrine deposits in the Presidente Prudente region), cycle 3 to the Santo Anastácio and lower Adamantina Formation (respectively fluvial and lacustrine deposits), and cycle 4 to the upper Adamantina Formation (fluvio-lacustrine facies). An erosional unconformity separates the Caiuá and Santo Anastácio Formations (between cycles 2 and 3). The Marília Formation is a distinct unit from the underlying succession; it does not occur in western São Paulo, but is found in restricted areas of São Paulo, Minas Gerais, Mato Grosso do Sul and Goiás States. During the deposition of the Bauru Group (Aptian? to Maastrichtian) the climate was hot and arid-semiarid. Shallow lakes underwent fluctuations in expansion (wet phases) and contraction (dry phases), as well as variations in salinity. During the deposition of the Adamantina Formation (Turonian-Santonian) there were long, dry periods that caused segmentation of large lakes (due to topographic irregularities in the basaltic substrate) and sometimes exposures of the lake floors; when flooded these lake floors were colonized by extensive meadows of single species of charophytes. Small ephemeral ponds, that were hydrochemically unstable and colonized by multiple species of charophytes, were the depositional sites for the marls and mudstones of Ponte Alta Member (Maastrichtian, Late Maastrichtian?). Our micropaleontological age control, combined with the Late Cretaceous ages of volcanic ashes found in the southeastern Brazil coastal basins, and the stratigraphic position of analcimites from the Jaboticabal-SP region, suggest a Late Coniacian-Santonian age for important magmatic events occurred in the interior of Brazil (north-central São Paulo State, Triângulo Mineiro, and southwestern Goiás State).
Resumo:
The Equatorial Atlantic Margin evolved from three rift systems recorded by a complex set of sedimentary basins developed since Upper Triassic to the Lower Cretaceous (Albian). The first rift system formed Foz do Amazonas Basin in Upper Triassic; the second phase formed Marajó Basin in Berriasian, a new rift in Foz do Amazonas Basin in Valanginian and Bragança-Viseu, Ilha Nova, São Luís e Barreirinhas basins in Aptian; the third phase formed Barreirinhas and Pará- Maranhão basins and a new rifting in the Foz do Amazonas Basin between the Aptian and Albian and evolved to continental break up. The main paleostress field during rift evolution was NE-SW and after the continental break up took the E-W direction, from the development of transform zones in the oceanic crust. From Miocene, South America was subjected to intraplate tectonics, which resulted in formation of E-W transcurrent faults that generated transtensive and transpressive segments that formed sedimentary basins and hills, resulting in changes in the drainage network. In Quaternary the landscape was modified by the last ice age that changed the sea level; the coastal drainage network was drowning resulting in the formation of the current line coast.
Resumo:
Pós-graduação em Geologia Regional - IGCE