12 resultados para Laser damage
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.
Resumo:
The influence of daily energy doses of 0.03, 0.3 and 0.9 J of He-Ne laser irradiation on the repair of surgically produced tibia damage was investigated in Wistar rats. Laser treatment was initiated 24 h after the trauma and continued daily for 7 or 14 days in two groups of nine rats (n=3 per laser dose and period). Two control groups (n=9 each) with injured tibiae were used. The course of healing was monitored using morphometrical analysis of the trabecular area. The organization of collagen fibers in the bone matrix and the histology of the tissue were evaluated using Picrosirius-polarization method and Masson's trichrome. After 7 days, there was a significant increase in the area of neoformed trabeculae in tibiae irradiated with 0.3 and 0.9 J compared to the controls. At a daily dose of 0.9 J (15 min of irradiation per day) the 7-day group showed a significant increase in trabecular bone growth compared to the 14-day group. However, the laser irradiation at the daily dose of 0.3 J produced no significant decrease in the trabecular area of the 14-day group compared to the 7-day group, but there was significant increase in the trabecular area of the 15-day controls compared to the 8-day controls. Irradiation increased the number of hypertrophic osteoclasts compared to non-irradiated injured tibiae (controls) on days 8 and 15. The Picrosirius-polarization method revealed bands of parallel collagen fibers (parallel-fibered bone) at the repair site of 14-day-irradiated tibiae, regardless of the dose. This organization improved when compared to 7-day-irradiated tibiae and control tibiae. These results show that low-level laser therapy stimulated the growth of the trabecular area and the concomitant invasion of osteoclasts during the first week, and hastened the organization of matrix collagen (parallel alignment of the fibers) in a second phase not seen in control, non-irradiated tibiae at the same period. The active osteoclasts that invaded the regenerating site were probably responsible for the decrease in trabecular area by the fourteenth day of irradiation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Statement of the Problem: The effectiveness of low-intensity red laser for activating a bleaching gel and its effect in pulp temperature was not investigated in dental literature. Purpose: The objective of this study was to assess the effectiveness of low-intensity red laser for activating a bleaching gel, as well as its effect in temperature of the bleaching gel and the dental pulp. Materials and Methods: Forty extracted bovine teeth were immersed in a solution of coffee 14 days for darkening. The initial colors were recorded by spectrophotometric analysis. The specimens were randomly distributed into two groups (N = 20): the control, which did not receive light and the experimental group that received light from an appliance fitted with three red light-emitting laser diodes (? = 660 nm). A green-colored, 35% H2O2based bleaching gel was applied for 30 minutes, and changed three times. After bleaching, the colors were again measured to obtain the L*a*b* values. Color variation was calculated (?E) and the data submitted to the non-paired t-test (5%). To assess temperature, 10 human incisors were prepared, in which one thermocouple was placed on the bleaching gel applied on the surface of the teeth and another inside the pulp chamber. Results: There was a significant difference between the groups (p = 0.016), and the experimental group presented a significantly higher mean variation (7.21 +/- 2.76) in comparison with the control group (5.37 +/- 1.76). There was an increase in pulp temperature, but it was not sufficient to cause damage to the pulp. Conclusion: Bleaching gel activation with low-intensity red laser was capable of increasing the effectiveness of bleaching treatment and did not increase pulp temperature to levels deleterious to the pulp. CLINICAL SIGNIFICANCE The application of a low-intensity red laser was effective for activating a bleaching gel with green dye, without any deleterious increases in pulpal temperature. (J Esthet Restor Dent 24:126134, 2012)
Resumo:
In this work we have studied pure and thulium- and chromium-doped ZBLAN glasses irradiated by ultra-short laser pulses. A Ti:sapphire CPA system was used, producing a 500 Hz train of pulses, centered at 830 nm, with 375 mu J of energy and 50 fs of duration (FWHM). The beam was focused by a 20 Him lens, producing a converging beam with a waist of 12 pin. The absorption spectra before and after laser irradiation were obtained showing production of color centers in pure, thulium-doped and chromium-doped ZBLAN glasses. A damage threshold of 9.56 TW/cm(2) was determined for ZBLAN. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this study we analyzed possible damages that vaporization from laser radiation could cause to implant material. Fifteen standard titanium implants, measuring 3.75 mm in diameter by 7 mm in length, were placed into the upper and lower jaws of three dogs according to Branemark's system. After osseointegration, all implants were exposed. In group I (control) conventional exposure with a punch was used; in group II, a CO2 laser with 2 W (power density: 256 W/cm(2); fluency: 0.077 J/cm(2), and a pulse mode of 0.30 ms) was used, and in group III 4 W (power density: 512 W/cm(2), fluency: 0.154 J/cm(2), and a pulse mode of 0.30 ms) was used. After vaporization, the cover screws were removed and sent for metallographic examination. The results showed that cover screws irradiated with 2 and 4 W power caused no superficial or microstructural alteration. The results also showed that the prescribed power densities, fluencies, and the use of the pulse mode were suitable for exposing implants without damage to tissue or implant material. (C) 2002 Laser Institute of America.
Resumo:
When the carious tissue is eliminated either by conventional methods (with burs) or with lasers, the risk of accidentally damage the surface of adjacent teeth may occur, which hypothetically could lead to a more susceptible surface for canes formation. This in vitro study aims to evaluate the caries resistance of the dental enamel surface irradiated by the Nd:YAG laser applied in conditions simulating accidental exposition. Thirteen third molars were used in this study. The experimental groups were: G1: sound control and control + carious; G2: contact Nd:YAG laser at 0.75, 1, 2, or 3 W; 10 Hz; 3 sec (27, 35, 71, and 106 J/cm(2)); G3: same parameters from G2 + caries artificial induction through the demineralization and demineralization (DES/RE) dynamic model. The caries resistance analysis was evaluated by the superficial morphological aspect through SEM images and also by Ca/P proportion through energy dispersive X-ray spectroscopy (EDX). The micrograph images showed that the Nd:YAG laser changed the normalmorphology of the enamel prisms resulting in a melted and re-solidified surface intensified with the power increase. Significant statistical differences were observed applying the Kruskal-Wallis statistical test (p <= 0.01) among the Nd:YAG laser irradiated groups and the control with caries regarding the Ca/P proportion. As an exception, this was not observed when 3 W; 10 Hz; 3 sec; 106 J/cm(2) was applied and posteriously submitted to a cariogenic challenge. The results indicate that the Nd:YAG laser accidental irradiation at low power settings did not represent risks to the enamel caries resistance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Laser hair removal is becoming an increasingly popular alternative to traditional methods such as shaving, waxing, among other methods. Semiconductor diode lasers are considered the most efficient light sources available and are especially well suited for clinical applications including hair reduction. The effectiveness of laser hair reduction depends on many variables, including the skin type of the patient. Material and Methods: A patient with Fitzpatrick Skin Type IV was submitted to laser hair removal of the arms with a high-power diode laser system with long pulses with a wavelength of 800 nm, a fluence of 40 J/cm2 and a pulse width of 20 ms. A 12-month follow-up assessment was performed and included photography and questionnaire. Results: Hypopigmentation was observed after a single laser hair removal section. After 6 months with the area totally covered, a gradual suntan with a sun screen lotion with an SPF of 15 was prescribed by the dermatologist. After 12 months of the initial treatment, a complete recovery of the hypopigmentation was achieved. Conclusion: Although a safe procedure, lasers for hair removal may be associated with adverse side effects including undesired pigment alterations. Before starting a laser hair removal treatment, patients seeking the eradication of hair should be informed that temporary, and possibly permanent, pigmentary changes may occur. © 2013 Informa UK, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)