3 resultados para LIGHT COHERENCE

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present model results for the two-halo-neutron correlation functions, C-nn, for the dissociation process of light exotic nuclei modelled as two neutrons and a core. A minimum is predicted for C-nn as a function of the relative momentum of the two neutrons, p(nn), due to the coherence of the neutrons in the halo and final state interaction. Studying the systems Be-14, Li-11, and He-6 within this model, we show that the numerical asymptotic limit, C-nn-> 1, occurs only for p(nn)greater than or similar to 400 MeV/c, while such limit is reached for much lower values of p(nn) in an independent particle model as the one used in the analysis of recent experimental data. Our model is consistent with data once the experimental correlation function is appropriately normalized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new approach for damage detection in structural health monitoring systems exploiting the coherence function between the signals from PZT (Lead Zirconate Titanate) transducers bonded to a host structure. The physical configuration of this new approach is similar to the configuration used in Lamb wave based methods, but the analysis and operation are different. A PZT excited by a signal with a wide frequency range acts as an actuator and others PZTs are used as sensors to receive the signal. The coherences between the signals from the PZT sensors are obtained and the standard deviation for each coherence function is computed. It is demonstrated through experimental results that the standard deviation of the coherence between the signals from the PZTs in healthy and damaged conditions is a very sensitive metric index to detect damage. Tests were carried out on an aluminum plate and the results show that the proposed methodology could be an excellent approach for structural health monitoring (SHM) applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a method for dioptric power mapping of progressive lenses through dual wavelength, low-coherence digital speckle pattern interferometry. Lens characterization finds several applications and is extremely useful in the fields of ophthalmology and astronomy, among others. The optical setup employs two red diode lasers which are conveniently aligned and tuned in order to generate a synthetic wavelength. The resulting speckle image formed onto a diffusive glass plate positioned behind the test lens appears covered of contour interference fringes describing the deformation on the light wavefront due to the analyzed lens. By employing phase stepping and phase unwrapping methods the wavefront phase was retrieved and then expressed in terms of a Zernike series. From this series, expressions for the dioptric power and astigmatic power were derived as a function of the x- and y-coordinates of the lens aperture. One spherical and two progressive lenses were measured. The experimental results presented a good agreement with those obtained through a commercial lensometer, showing the potentialities of the method. © 2013 Elsevier Ltd.