22 resultados para LH beta mRNA

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cattle, most evidence suggests that granulosa cells express LH receptors (LHR) after (or as) the follicle becomes dominant, however there is some suggestion that granulosa cells from smaller pre-dominant follicles may express several LHR mRNA splice variants. The objective of this study was to measure LHR expression in bovine follicles of defined size and steroiclogenic ability, and in granulosa cells from small follicles (< 6 mm diameter) undergoing differentiation in vitro. Serniquantitative RT-PCR demonstrated that LHR mRNA was undetectable in granulosa cells of follicles < 7 mm diameter (nondominant follicles), and increased with follicle diameter in follicles > 7 mm diameter. Splice variants with deletions of exon 10 and part of exon 11 were detected as previously described, and we detected a novel splice variant with a deletion of exon 3. Cultured granulosa cells contained LHR mRNA, but with significantly greater amounts of variants with deletions of exon 10 and/or exon 11 compared with cells from dominant follicles. FSH increased the abundance of some but not all LHR mRNA splice variants in cultured granulosa cells. The addition of LH to cultured cells did not increase progesterone secretion, despite the presence of LHR mRNA. Collectively, these data suggest that granulosa cells do not acquire functional LHR until follicle dominance occurs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MCF-7 (estrogen receptor positive - ER(+)) and MDA-MB-231 (estrogen receptor negative - ER(-)) are human breast cancer cell lines which express functional thyroid hormone receptors (c-erb A alpha 1 and c-erb beta 1) as indicated by stimulation of mitochondrial alpha-glycerophosphate dehydrogenase. In MCF-7, mimicking E(2), T-3 stimulated growth in a dose-dependent (10(10) M-10(-8) M) manner, induced the expression of progesterone receptor and growth factor TGF alpha mRNAs and inhibited that of TGF beta mRNA; T-3 also increased progesterone binding and LDH5 isozyme activities. None of these effects were observed in (ER(-)) MDA-MB-231 cells. 10(-6) M tamoxifen (TAM) reverted growth stimulation, suppressed progesterone receptor and TGF alpha mRNA induction and restored TGF beta mRNA to control levels in T-3-treated MCF-7 cells. That T-3 is acting in MCF-7 cells via its binding to ER is suggested by the immunoprecipitation of pre-bound I-125-T-3 from MCF-7 nuclear extracts by an ER-specific monoclonal antibody and by the displacement of H-3-estradiol binding to ER by radioinert T-3. Copyright (C) 1996 Elsevier B.V. Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal placental development is common in the bovine somatic cell nuclear transfer (SCNT)-derived fetus. In the present study, we characterised the expression of E-cadherin and beta-catenin, structural proteins of adherens junctions, in SCNT gestations as a model for impaired placentation. Cotyledonary tissues were separated from pregnant uteri of SCNT (n - 6) and control pregnancies (n - 8) obtained by artificial insemination. Samples were analysed by western blot, quantitative RT-PCR (qRT-PCR) and immunohistochemistry. Bovine trophectoderm cell lines derived from SCNT and control embryos were analysed to compare with the in utero condition. Although no differences in E-cadherin or beta-catenin mRNA abundance were observed in fetal tissues between the two groups, proteins encoded by these genes were markedly under-expressed in SCNT trophoblast cells. Immunohistochemistry revealed a different pattern of E-cadherin and total beta-catenin localisation in SCNT placentas compared with controls. No difference was observed in subcellular localisation of dephosphorylated active-beta-catenin protein in SCNT tissues compared with controls. However, qRT-PCR confirmed that the wingless (WNT)/beta-catenin signalling pathway target genes CCND1, CLDN1 and MSX1 were downregulated in SCNT placentas. No differences were detected between two groups of bovine trophectoderm cell lines. Our results suggest that impaired expression of E-cadherin and beta-catenin proteins, along with defective beta-catenin signalling during embryo attachment, specifically during placentation, is a molecular mechanism explaining insufficient placentation in the bovine SCNT-derived fetus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To elucidate the molecular profile of hormonal steroid receptor status, we analyzed ER-alpha, ER-beta, and PGR mRNA and protein expression in 80 breast carcinomas using reverse transcriptase polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical analysis. Qualitative analysis revealed positive expression of ER-alpha, ER-beta, and PGR mRNA in 48%, 59%, and 48% of the breast carcinomas, respectively. ER-alpha, ER-beta, and PGR transcript overexpression was observed in 51%, 0%, and 12% of the cases, respectively, whereas moderate or strong protein expression was detected in 68%, 78%, and 49% of the cases, respectively. Tumor grade was negatively correlated with transcript and protein levels of ER-alpha (P = .0169 and P = .0006, respectively) and PGR (P = .0034 and P = .0005, respectively). Similarly, proliferative index Ki-67 was negatively associated with transcript and protein levels of ER-alpha (P = .0006 and P < .0001, respectively) and PGR (P = .0258 and P =. 0005, respectively). These findings suggest that ER-alpha and PGR expression are associated with well-differentiated breast tumors and less directly related to cell proliferation. A significant statistical difference was observed between lymph node status and ER-beta protein expression (P = .0208). In ER-alpha-negative tumors, we detected a correlation between ER-beta protein expression and high levels of Ki-67. These data suggest that ER-beta could be a prognostic marker in human breast cancer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. In the present study, the role of macrophages and mast cells in mineral trioxide aggregate (MTA)-induced release of neutrophil chemotactic factor was investigated.Study design. MTA suspension (50 mg/mL) was plated over inserts on macrophages or mast cells for 90 minutes. Untreated cells served as controls. Cells were washed and cultured for 90 minutes in RPMI without the stimuli. Macrophages and mast cell supernatants were injected intraperitoneally (0.5 mL/cavity), and neutrophil migration was assessed 6 hours later. In some experiments, cells were incubated for 30 minutes with dexamethasone (DEX, 10 mu M/well), BWA4C (BW, 100 mu M/well) or U75302 (U75, 10 mu M/well). The concentration of Leukotriene B-4 (LTB4) in the cell-free supernatant from mast cells and macrophage culture was measured by ELISA.Results. Supernatants from MTA-stimulated macrophages and mast cells caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages and mast cells was significantly inhibited by DEX, BW, or U75. Macrophages and mast cells expressed mRNA for interleukin-1 (IL-1)beta and macrophage inflammatory protein-2 (MIP-2) and the pretreatment of macrophages and mast cells with DEX, BW, or U75 significantly altered IL-1 beta and MIP-2 mRNA expression. LTB4 was detected in the MTA-stimulated macrophage supernatant but not mast cells.Conclusions. MTA-induces the release of neutrophil chemotactic factor substances from macrophages and mast cells with participation of IL-1 beta, MIP-2, and LTB4. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e135-e142)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.