14 resultados para Knowledge network

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of new technologies that use peer-to-peer networks grows every day, with the object to supply the need of sharing information, resources and services of databases around the world. Among them are the peer-to-peer databases that take advantage of peer-to-peer networks to manage distributed knowledge bases, allowing the sharing of information semantically related but syntactically heterogeneous. However, it is a challenge to ensure the efficient search for information without compromising the autonomy of each node and network flexibility, given the structural characteristics of these networks. On the other hand, some studies propose the use of ontology semantics by assigning standardized categorization of information. The main original contribution of this work is the approach of this problem with a proposal for optimization of queries supported by the Ant Colony algorithm and classification though ontologies. The results show that this strategy enables the semantic support to the searches in peer-to-peer databases, aiming to expand the results without compromising network performance. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Design - FAAC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work identifies and analyzes literature about knowledge organization (KO), expressed in scientific journals communication of information science (IS). It performs an exploratory study on the Base de Dados Referencial de Artigos de Periodicos em Ciência da Informacio (BRAPCI, Reference Database of Journal Articles on Information Science) between the years 2000 and 2010. The descriptors relating to "knowledge organization" are used in order to recover and analyze the corresponding articles and to identify descriptors and concepts which integrate the semantic universe related to KO. Through the analysis of content, based on metrical studies, this article gathers and interprets data relating to documents and authors. Through this, it demonstrates the development of this field and its research fronts according to the observed characteristics, as well as noting the transformation indicative in the production of knowledge. The work describes the influences of the Spanish researchers on Brazilian literature in the fields of knowledge and information organization. As a result, it presents the most cited and productive authors, the theoretical currents which support them, and the most significant relationships of the Spanish-Brazilian authors network. Based on the constant key-words analysis in the cited articles, the co-existence of the French conception current and the incipient Spanish influence in Brazil is observed. Through this, it contributes to the comprehension of the thematic range relating to KO, stimulating both criticism and self-criticism, debate and knowledge creation, based on studies that have been developed and institutionalized in academic contexts in Spain and Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroma-epithelium relationships are of great relevance in prostatic morphogenesis and physiology, However, little knowledge exists about either stromal cells or extracellular matrix composition and arrangement in this system, Ultrastructural analysis revealed the existence of a microfibrillar system which occupies large areas of the rat prostatic stroma, In this work, we have applied immunocytochemistry and an ATP treatment for the ultrastructural identification of collagen type VI microfibrils, aiming at examining its participation in the prostatic microfibrillar network. Immunocytochemistry was also extended to a human case of prostatic nodular hyperplasia, Both methods succeeded in identifying collagen type VI in the rat ventral prostate, Collagen type VI is evenly distributed throughout the stroma but mainly associated with the basal lamina, collagen fibrils, and around the stromal cells, the use of ATP treatment allowed for the discrimination between collagen type VI and elastin-associated microfibrils, and demonstrated that these two classes of microfibrils establish an extended, mixed, and open network. The same aspects of association with the basal lamina, with stromal cells (particularly with smooth muscle cells), and with fibrillar components of the stroma were observed in the human tissue, We suggest that the collagen type VI and elastin-associated microfibril system may be involved in the control of some aspects of cellular behavior and may also play a structural role, maintaining the organ integrity after the deformations occurring under smooth muscle contraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents two different approaches to detect, locate, and characterize structural damage. Both techniques utilize electrical impedance in a first stage to locate the damaged area. In the second stage, to quantify the damage severity, one can use neural network, or optimization technique. The electrical impedance-based, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations, this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors, and therefore, it is able to detect the damage in its early stage. Optimization approaches must be used for the case where a good condensed model is known, while neural network can be also used to estimate the nature of damage without prior knowledge of the model of the structure. The paper concludes with an experimental example in a welded cubic aluminum structure, in order to verify the performance of these two proposed methodologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major problems facing Blast Furnaces is the occurrence of cracks in taphole mud, as the underlying causes are not easily identifiable. The absence of this knowledge makes it difficult the use of conventional techniques for predictability and mitigation. This paper will address the application of Probabilistic Neural Network using the Matlab software as a means to detect and control such cracks. The most relevant BF operational variables were picked through the statistic tool "Principal Component Analysis - PCA." Based upon the selection of these variables a probabilistic neural network was built. A set of BF operational data, consisting of 30 controlling variables, was divided into 2 groups, one of which for network training, and the other one to validate the neural network. The neural network got 98% of the cases right. The results show the effectiveness of this tool for crack prediction in relation to clay intrinsic properties and as a result of the fluctuation in operational variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific research plays a fundamental role in the health and development of any society, since all technological advances depend ultimately on scientific discovery and the generation of wealth is intricately dependent on technological advance. Due to their importance, science and technology generally occupy important places in the hierarchical structure of developed societies, and they receive considerable public and private investment. Publicly funded science is almost entirely devoted to discovery, and it is administered and structured in a very similar way throughout the world. Particularly in the biological sciences, this structure, which is very much centered on the individual scientist and his own hypothesis-based investigations, may not be the best suited for either discovery in the context of complex biological systems, or for the efficient advancement of fundamental knowledge into practical utility. The adoption of other organizational paradigms, which permit a more coordinated and interactive research structure, may provide important opportunities to accelerate the scientific process and further enhance its relevance and contribution to society. The key alternative is a structure that incorporates larger organizational units to tackle larger and more complex problems. One example of such a unit is the research network. Brazil has utilized such networks to great effect in genome sequencing projects, demonstrating their relevance to the Brazilian research community and opening the possibility of their wider utility in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an automatic methodology for road network extraction from medium-and high-resolution aerial images. It is based on two steps. In the first step, the road seeds (i.e., road segments) are extracted using a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each road seed is composed by a sequence of connected road objects in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. In the second step, two strategies for road completion are applied in order to generate the complete road network. The first strategy is based on two basic perceptual grouping rules, i.e., proximity and collinearity rules, which allow the sequential reconstruction of gaps between every pair of disconnected road segments. This strategy does not allow the reconstruction of road crossings, but it allows the extraction of road centerlines from the contiguous quadrilaterals representing connected road segments. The second strategy for road completion aims at reconstructing road crossings. Firstly, the road centerlines are used to find reference points for road crossings, which are their approximate positions. Then these points are used to extract polygons representing the contours of road crossings. This paper presents the proposed methodology and experimental results. © Pleiades Publishing, Inc. 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few years, vehicular ad hoc networks(VANETs) was studied extensively by researchers. VANETs is a type of P2P network, though it has some distinct characters (fast moving, short lived connection etc.). In this paper, we present several limitations of current trust management schemes in VANETs and propose ways to counter them. We first review several trust management techniques in VANETs and argue that the ephemeral nature of VANETs render them useless in practical situations. We identify that the problem of information cascading and oversampling, which commonly arise in social networks, also adversely affects trust management schemes in VANETs. To the best of our knowledge, we are the first to introduce information cascading and oversampling to VANETs. We show that simple voting for decision making leads to oversampling and gives incorrect results in VANETs. To overcome this problem, we propose a novel voting scheme. In our scheme, each vehicle has different voting weight according to its distance from the event. The vehicle which is more closer to the event possesses higher weight. Simulations show that our proposed algorithm performs better than simple voting, increasing the correctness of voting. © 2012 Springer Science + Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the scientific collaboration network formed by the Brazilian universities that investigate in dentistry area. The constructed network is based on the published documents in the Scopus (Elsevier) database covering a period of 10 (ten) years. It is used social network analysis as the best methodological approach to visualize the capacity for collaboration, dissemination and transmission of new knowledge among universities. Cohesion and density of the collaboration network is analyzed, as well as the centrality of the universities as key-actors and the occurrence of subgroups within the network. Data were analyzed using the software UCINET and NetDraw. The number of documents published by each university was used as an indicator of its scientific production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.