16 resultados para Kinetics uptake
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main purpose of this study was to analyze the effects of exercise mode, training status and specificity on the oxygen uptake ((V)over dot O-2) kinetics during maximal exercise performed in treadmill running and cycle ergometry. Seven runners (R), nine cyclists (C), nine triathletes (T) and eleven untrained subjects (U), performed the following tests on different days on a motorized treadmill and on a cycle ergometer: (1) incremental tests in order to determine the maximal oxygen uptake ((V)over dot O-2max) and the intensity associated with the achievement of (V)over dot O-2max (I(V)over dot O-2max); and (2) constant work-rate running and cycling exercises to exhaustion at I(V)over dot O-2max to determine the effective time constant of the (V)over dot O-2 response (tau(V)over dot O-2). Values for (V)over dotO(2max) obtained on the treadmill and cycle ergometer [R=68.8 (6.3) and 62.0 (5.0); C=60.5 (8.0) and 67.6 (7.6); T=64.5 (4.8) and 61.0 (4.1); U=43.5 (7.0) and 36.7 (5.6); respectively] were higher for the group with specific training in the modality. The U group showed the lowest values for VO2max, regardless of exercise mode. Differences in tau(V)over dot O-2 (seconds) were found only for the U group in relation to the trained groups [R=31.6 (10.5) and 40.9 (13.6); C=28.5 (5.8) and 32.7 (5.7); T=32.5 (5.6) and 40.7 (7.5); U=52.7 (8.5) and 62.2 (15.3); for the treadmill and cycle ergometer, respectively]; no effects of exercise mode were found in any of the groups. It is concluded that tauVO(2) during the exercise performed at I(V)over dot O-2max is dependent on the training status, but not dependent on the exercise mode and specificity of training. Moreover, the transfer of the training effects on tau(V)over dotO(2) between both exercise modes may be higher compared with (V)over dot O-2max.
Resumo:
Zinc (Zn) uptake kinetics and root and leaf anatomy were studied in coffee trees grown in nutrient solutions with or without Zn. Leaves and roots were sampled and cuts were made in the medium part of the leaves and in root tips and observed under an optical microscope. Plants grown without Zn showed an increase in root and in root stele diameter. There was also an increase in epidermis thickness and in the cross-sectional area of the cortex and stele due to Zn deficiency, but the diameter of xylem vessels was decreased. An increase in root cortex and stele diameter provided for an increased surface for nutrient uptake. Accordingly, C(min) was decreased from 13.8 to 3.4 mu mol L(-1) and V(max) increased from 0.50 to 2.1 mu mol cm(-2) h(-1) .
Resumo:
The objective of the present study was to compare pulmonary gas exchange kinetics (VO 2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO 2max) and the intensity associated with the achievement of VO 2max (IVO 2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO 2max to determine the time to exhaustion at IVO 2max (Tlim) and the time constant of oxygen uptake kinetics (τ). The τ was significantly faster in trained group, both in cycling (EC = 28.2 ± 4.7 s; UC = 63.8 ± 25.0 s) and in running (ER = 28.5 ± 8.5 s; UR = 59.3 ± 12.0 s). Tlim of untrained was significantly lower in cycling (EC = 384.4 ± 66.6 s vs. UC; 311.1 ± 105.7 s) and higher in running (ER = 309.2 ± 176.6 s vs. UR = 439.8 ± 104.2 s). We conclude that the VO 2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO 2max in running and cycling. © 2003 Taylor & Francis Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To date little is known about the reliability of peak oxygen consumption (VO2pEAK) in incremental metronome paced step tests (1ST) and the reliability of on-kinetics VO2 has never been studied. We aimed to study the reliability of both tests. Eleven healthy subjects performed two ISTs until exhaustion. On two different days two duplicate 4 min constant metronome paced step tests (CST) were performed. VO2PEAK, mean response time (MRT) and phase II time constant (tau) were tested for reproducibility using the paired t-tests, in addition to the limits of agreement (LOA) and within subject coefficient of variation (COV). With a 95% LOA of 0.38 to 0.26 L min(-1), -8.7 to 9.1 s and -9.9 to 10.5 s they exhibit a COV of 3%, 4.5% and 6.9% for VO2PEAK, MRT and tau respectively. ST are sufficiently reliable for maximal and submaximal aerobic power assessments in healthy subjects and new studies of oxygen uptake kinetics in selected patient groups are warranted. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this research was the development of a procedure to measure biological kinetics of organic matter oxidation and nitrification in constructed wetland, by using respirometric techniques. Columns simulating cores of vertical subsurface flow systems were investigated. The oxygen uptake rate (OUR) of the columns was calculated on the basis of the difference of DO concentrations measured continuously at the top and at the bottom of the column. From the respirogram, the following kinetic parameters have been evaluated: maximum rate of oxidation of readily biodegradable COD, maximum rate of nitrification, endogenous respiration of the biomass grown inside the bed. In order to improve the interpretation of the respirograms, additional respirometric tests were carried out on the wetland columns by using pure substrates, such as acetate (carbon source) and ammonium (substrate for nitrification). The kinetic parameters obtained from respirograms can be useful for control and design of constructed wetlands or for improving nutrient and carbon mass balances.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to verify the effect of the exercise mode on slow component of VO(2) (VO(2)SC) in children aged 11-12 years during severe-intensity exercise. After determination of the lactate threshold (LT) and peak VO(2) (VO(2)peak) in both cycling (CE) and running exercise (TR), fourteen active boys completed a series of "square-wave" transitions of 6-min duration at 75%Delta [75%Delta = LT + 0.75 X (VO(2)peak-LT)l to determine the VO(2) kinetics. The VO(2)SC was significantly higher in CE (180.5 +/- 155.8 ml . min(-1)) than in TR (113.0 +/- 84.2 ml . min(-1)). We can conclude that, although a VO(2)SC does indeed develop during TR in children, its magnitude is considerably lower than in CE during severe-intensity exercise.
Resumo:
The aim of this study was to address the question if the VO2 kinetics is further improved as the aerobic training status increases from trained to elite level athletes. Maximal oxygen uptake (VO(2)max), work-rate associated to VO(2)max (IVO(2)max) and VO2 kinetics of moderate (Mod) and maximal exercise (Max) were determined in fifty-five subjects. Then, they were assigned into three groups: low (LF), intermediate (IF) and high (HF) aerobic fitness level. In average, the VO(2)max of LF, IF and HF groups were, respectively, 36.0 +/- 3.1, 51.1 +/- 4.5 and 68.1 +/- 3.9 ml . kg . min(-1) (p <= 0.05 among each other). VO2 kinetics mean response time of both exercise intensities were significantly faster (p <= 0.05) in HF (Mod, 27.5 +/- 5.5 s; Max, 32.6 +/- 8.3 s) and IF (Mod, 25.0 +/- 3.1 s; Max, 42.6 +/- 10.4 s) when compared to LF (Mod, 35.7 +/- 7.9 s; Max: 57.8 +/- 17.8 s). We can conclude that VO2 kinetics is improved as the fitness level is increased from low to intermediate but not further improved as the aerobic fitness level increases from intermediate to high.
Resumo:
This work evaluated kinetic and adsorption physicochemical models for the biosorption process of lanthanum, neodymium, europium, and gadolinium by Sargassum sp. in batch systems. The results showed: (a) the pseudo-second order kinetic model was the best approximation for the experimental data with the metal adsorption initial velocity parameter in 0.042-0.055 mmol.g -1.min-1 (La < Nd < Gd < Eu); (b) the Langmuir adsorption model presented adequate correlation with maximum metal uptake at 0.60-0.70 mmol g-1 (Eu < La < Gd < Nd) and the metal-biomass affinity parameter showed distinct values (Gd < Nd < Eu < La: 183.1, 192.5, 678.3, and 837.3 L g-1, respectively); and (c) preliminarily, the kinetics and adsorption evaluation did not reveal a well-defined metal selectivity behavior for the RE biosorption in Sargassum sp., but they indicate a possible partition among RE studied. © (2009) Trans Tech Publications.