12 resultados para Jupiter (Roman deity)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
En redonnant vie au problème de la transformation des formes tout au long de l'itinéraire de la pensée de Sartre - de la "philosophie pure" à la "monographie historique concrète" -, cette étude essaie de reconstituer quelques moments du processus de gestation de la synthèse sartrienne entre Philosophie, Roman et Révolution. La "monographie historique concrète" aurait-elle chez Sartre la fonction de succédané pour la "Philosophie Traditionnelle" et pour le "Roman Traditionnel"? Ce qui semble conduire l'itinéraire sartrien - de L'être et le néant à L'idiot de la famille -, c'est la recherche d'une forme philosophique, littéraire et historique qui présuppose, sous-jacente, une Théorie du Roman indissolublement liée à une Théorie de la Révolution, plus précisément, à une théorie de la temporalité révolutionnaire qui recèle en elle-même la marque décisive de l'expérience politique de la Guerre, de Occupation et de la Résistance.
Resumo:
We study the effects of Jupiter mass growth in order to permanently capture prograde satellites. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time while considering the decrease in Jupiter's mass. We considered the particle's initial conditions to be prograde, at pericenter, in the region 100R(4) <= a <= 400R(4) and 0 <= e <= 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values give an indication of the conditions that are necessary for capture. An analysis of these results shows that prograde satellite capture is more complex than a retrograde one. It occurs in a two-step process. First, when the particles get inside about 0.85R(Hill) (Hills' radius), they become weakly bound to Jupiter. Then, they keep migrating toward the planet with a strong decrease in eccentricity, while the planet is growing. The radial oscillation of the particles reduces significantly when they reach a radial distance that is less than about 0.45R(Hill) from the planet. Three-dimensional simulations for the known prograde satellites of Jupiter were performed. The results indicate that Leda, Himalia, Lysithea, and Elara could have been permanently captured when Jupiter had between 50% and 60% of its present mass.
Resumo:
In this work we study the basic aspects concerning the stability of the outer satellites of Jupiter. Including the effects of the four giant planets and the Sun we study a large grid of initial conditions. Some important regions where satellites cannot survive are found. Basically these regions are due to Kozai and other resonances. We give an analytical explanation for the libration of the pericenters (ω) over bar - (ω) over bar (J). Another different center is also found. The period and amplitude of these librations are quite sensitive to initial conditions, so that precise observational data are needed for Pasiphae and Sinope. The effect of Jupiter's mass variation is briefly presented. This effect can be responsible for satellite capture and also for locking (ω) over bar - (ω) over bar (J) in temporary libration.
Resumo:
Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L-1 indicates that mass accretion provides an increase of the confinement region ( delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M-4. We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R-4 less than or equal to a less than or equal to 400 R-4 and 0 less than or equal to e < 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values are an indication of the necessary conditions that could provide capture. An analysis of these results shows that retrograde satellites would be captured as soon as they get inside the Hills' radius and after that they keep migrating toward the planet while it is growing. For the region where the orbits of the four old retrograde satellites of Jupiter ( Ananke, Carme, Pasiphae and Sinope) are located we found that such satellites could have been permanently captured when Jupiter had between 62% and 93% of its present mass.
Resumo:
The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360 degrees around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones.
Resumo:
Among the hidden pieces of the giant puzzle, which is our Solar system, the origins of irregularsatellites of the giant planets stand to be explained, while the origins of regular satellites arewell explained by the in situ formation model through matter accretion. Once they are notlocally formed, the most acceptable theory predicts that they had been formed elsewhere andbecame captured later, most likely during the last stage of planet formation. However, underthe restricted three-body problem theory, captures are temporary and there is still no assistedcapture mechanism which is well established. In a previous work, we showed that the capturemechanism of a binary asteroid under the co-planar four-body scenario yielded permanentcaptured objects with an orbital shape which is very similar to those of the actual progradeirregular Jovian satellites. By extending our previous study to a 3D case, here we demonstratethat the capture mechanism of a binary asteroid can produce permanent captures of objects byitself which have very similar orbits to irregular Jovian satellites. Some of the captured objectswithout aid of gas drag or other mechanisms present a triplet: semi-major axis, eccentricityand inclination, which is comparable to the already known irregular Jovian objects. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Pós-graduação em Letras - FCLAS
Resumo:
In Metamorphoses, the Roman poet Ovid tells the tale of the transformation of Jupiter into a bull to seduce the Phoenician princess Europa. During Renaissance, as is well known, Western civilization fostered an intense renewal of its values under the clear influence of Greco-Roman culture. Ovid, whose fame had not ceased throughout the Middle Ages, became then even better known, and especially his poem Metamorphoses turned into a remarkable source of inspiration not only to literature but also to fine arts and their new humanistic conception. Thus, the episode of the abduction of Europa received a dramatic pictorial expression in the broad brush strokes of the Venetian master Titian Vecellio, who interpreted several classical myths in his canvases at the height of his creative maturity. There are many and obvious relationships in the verses of the ancient Latin poet and the picture of the Italian Renaissancist. In Metamorphoses, the mythical account is described in so many details and set in such an expressive poetic that Titian could take Ovid´s narrative as a model for painting “The Rape of Europa”, doing a true exercise in intersemiotic translation by interpreting verbal signs through pictorial signs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this paper was to analyse the activity of the longissimus dorsi and the iliocostalis lumborum muscles--components of the erector spinae muscle--in order to determine: their action potentials during the use of a plain and a tilt Roman table; 2) to compare the action potentials of the two muscles; 3) to verify if the action potential of these two muscles remain constant during the arc of movement--knee flexion and extension--divided into angle ranges, and 4) to compare the action potentials of the muscles in movements performed in a free manner and against resistance. Twenty-three young volunteers were studied electromyographically and each muscle received a needle electrode (Mise) and a surface electrode. The results showed that the table model did not determine any difference in the action potential of the muscles and that, on average, the iliocostalis lumborum muscle developed a slightly higher action potential than the longissimus dorsi muscle during the free flexion of knees on the plain table. In more than 70% of the cases, there was no difference between the action potential of the muscles over the various angle ranges of knee flexion and extension. Relatively higher action potentials were recorded during knee flexion and extension against resistance than during the same movements performed in a free manner. This shows that the paravertebral musculature responds better to an overload (8 kg) imposed on the knee flexor group, confirming the stabilizing role of the longissimus dorsi and iliocostalis lumborum muscles during knee flexion and extension on a Roman table.
Resumo:
Pós-graduação em História - FCLAS