6 resultados para JEL Classification Q5
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This study aimed: 1) to classify ingredients according to the digestible amino acid (AA) profile; 2) to determine ingredients with AA profile closer to the ideal for broiler chickens; and 3) to compare digestible AA profiles from simulated diets with the ideal protein profile. The digestible AA levels of 30 ingredients were compiled from the literature and presented as percentages of lysine according to the ideal protein concept. Cluster and principal component analyses (exploratory analyses) were used to compose and describe groups of ingredients according to AA profiles. Four ingredient groups were identified by cluster analysis, and the classification of the ingredients within each of these groups was obtained from a principal component analysis, showing 11 classes of ingredients with similar digestible AA profiles. The ingredients with AA profiles closer to the ideal protein were meat and bone meal 45, fish meal 60 and wheat germ meal, all of them constituting Class 1; the ingredients from the other classes gradually diverged from the ideal protein. Soybean meal, which is the main protein source for poultry, showed good AA balance since it was included in Class 3. on the contrary, corn, which is the main energy source in poultry diets, was classified in Class 8. Dietary AA profiles were improved when corn and/or soybean meal were partially or totally replaced in the simulations by ingredients with better AA balance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reports on a sensor array able to distinguish tastes and used to classify red wines. The array comprises sensing units made from Langmuir-Blodgett (LB) films of conducting polymers and lipids and layer-by-layer (LBL) films from chitosan deposited onto gold interdigitated electrodes. Using impedance spectroscopy as the principle of detection, we show that distinct clusters can be identified in principal component analysis (PCA) plots for six types of red wine. Distinction can be made with regard to vintage, vineyard and brands of the red wine. Furthermore, if the data are treated with artificial neural networks (ANNs), this artificial tongue can identify wine samples stored under different conditions. This is illustrated by considering 900 wine samples, obtained with 30 measurements for each of the five bottles of the six wines, which could be recognised with 100% accuracy using the algorithms Standard Backpropagation and Backpropagation momentum in the ANNs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)