34 resultados para Itu Province
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper describes the chemical variability of the Late Precambrian Itu Rapakivi Province (IRP), State of São Paulo, SE Brazil, based on 187 selected analyses from the Itu, São Francisco, Sorocaba, Campina do Veado and Sguario/ Correa granites. The IRP has an almost uniform petrographic character conferred by the overall dominance of subalkaline biotite granites. Monzogranites (adamellites), granodiorites, quartz syenites, quartz monzonites are rare to very rare rock types and tonalites and quartz diorites are almost restricted to enclaves. Typical chemical features are the high FeO*/MgO ratio, a clustering of the K2O values between 4.5 and 6.0 wt.% and K2O/Na2O ratios which define the IRP as mildly potassic although more potassic rocks also occur. The overal Peacock Alkalinity Index is 54 defining the Province as alkali-calcic. In the Shand diagram the data cluster near the metaluminous/peraluminous boundary. Relationships between Nb, Rb and Y stress the within plate character of the IRP and the relationships between Rb, Ba and Sr reveal the importance of feldspar fractionation in magma evolution. The data also show an interbody and an intrabody chemical variability due to the variation in the composition of the crustal magma protoliths, as assigned by K/Rb relations. The presence of several magmatic cycles which built up the major intrusions reflects a magma ascent from collecting chambers successively drained and recharged, a feature in agreement with the clear link between the bodies and long lived, successively reactivated, transcurrent faults. Most of the chemical features of the IRP correspond to those of the classical Finnish rapakivi granites.
Resumo:
The upper portion of the Rio Guaratuba, located in the Serra do Mar coastal range of Southeastern Brazil, shows biological and geological evidences of being captured and diverted away from its original course in the direction of the Parana River Basin to become a coastal river due to the Quaternary activity of NW-trending faults. Despite draining directly to the Atlantic Ocean, the upper portion of the Guaratuba still maintains an ichthyofauna that is typical of the adjoining Parana River Basin rather than the characteristic fish fauna of the Brazilian coastal drainages. The fish fauna of the upper Guaratuba is an evident testimony of the tectonic process that allowed the faunal interchange between the upland basins and the coastal drainages that probably has been taking place in Southeastern Brazil throughout the long geological history of the passive Brazilian continental margin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite(U-Pb age 1406 Ma), Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga Sunsas/Aguapei orogeny. The six intra-plate rapakivi granite episodes in the southwestern part of the Amazonian craton form three broad periods of anorogenic magmatism that have age-correlative events composed of similar rocks and geologic environments in eastern Laurentia and Baltica, although the exact timing of magmatism appears slightly different. Recognition of lithologic and chronological correlations between various cratons provide important constraints to models explaining the interplay between rapakivi granite magmatism and deep crustal evolution of an early Mesoproterozoic supercontinent. They are, furthermore, important to plate tectonic models for the assembly, dispersal and reassembly of Amazonia, Laurentia and Baltica in the Mesoproterozoic and Neoproterozoic. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
On the basis of geologic, petrologic, and U-Pb geochronologic data the basement rocks in the east-central part of the Rondonia Tin Province (RTP, southwestern Amazonian craton) are grouped into five lithologic associations: (1) tonalitic gneiss (1.75 Ga); (2) enderbitic granulite (1.73 Ga); (3) paragneiss; (4) granitic and charnockitic augen gneisses (1.57-1.53 Ga); and (5) fine-grained granitic gneiss and charnockitic granulite (1.43-1.42 Ga). The first three are related to development of the Paleoproterozoic Rio Negro-Juruena Province and represent the oldest crust in the region. The tonalitic gneisses and enderbitic granulites show calc-alkaline affinities and Nd isotopic compositions (initial epsilon(Nd) = +0-1 to -1.5; T-DM of 2.2-2.1 Ga) that suggest a continental arc margin setting for the original magmas. The paragneisses yield T-DM values of 2.2-2.1 Ga suggesting that source material was primarily derived from the Ventuari-Tapajos and Rio Negro-Juruena crusts, but detrital zircon ages and an intrusive granitoid bracket deposition between 1.67 and 1.57 Ga. The granitic and charnockitic augen gneisses show predominantly A-type and within-plate granite affinities, but also some volcanic arc granite characteristics. The initial epsilon(Nd) values (+0.6 to +2.0) indicate mixing of magmas derived from depleted mantle and older crustal sources. These rocks are correlated to the 1.60-1.53 Ga Serra da Providencia intrusive suite that reflects inboard magmatism coeval with the Cachoeirinha orogen located to the southeast. The fine-grained granitic gneiss and charnockitic granulites represent the first record of widespread magmatism at 1.43-1.42 Ga in northern Rondonia. Their geochemical signatures and the slightly positive initial epsilon(Nd) values (+0.7 to +1.2) are very similar to those of the most evolved granites of the calc-alkaline Santa Helena batholith farther southeast. U-Pb monazite and Sm-Nd whole-rock-garnet ages demonstrate that a high-grade tectonometa-morphic episode occurred in this region at 1.33-1.30 Ga. This episode attained upper-amphibolite conditions and is interpreted as the peak of the Rondonian-San Ignacio orogeny. The U-Pb and Sm-Nd data presented here and data published on rapakivi granites elsewhere indicate that the east-central part of the RTP is a poly-orogenic region characterized by successive episodes of magmatism, metamorphism, and deformation between 1.75 and 0.97 Ga. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T > 750 degrees C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramatic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events.We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 +/- 2.1 Ma, Chalk Mountain 377.7 +/- 2.5 Ma, Mt. Airy 334 +/- 3 Ma, Stone Mountain 335.6 +/- 1.0 Ma, and Rabun 335.1 +/- 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians.
Resumo:
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondonia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondonia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Barbara deposit (Rondonia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sri (+/-W, +/-Ta, +/-Nb), and base-metal suite (Zn-Cu-Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0-19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245-450 degreesC, and (2) aqueous solutions with low CO2, low to moderate salinity (0-14 wt.% NaCl eq.), which homogenize between 100 and 340 T. In the Santa Barbara deposit, the early inclusions are represented by (1) low-salinity (5-12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 T, and (2) low-salinity (0-3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320380 degreesC. Cassiterite, wolframite, columbite-tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0-6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100-260 degreesC) and characterizes the sulfide fluorite-sericite association in the Correas deposit. The late fluid in the Santa Barbara deposit has lower salinity (0-3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240-450 degreesC, and 1,0-2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (delta(18)O quartz from 9.9parts per thousand to 10.9parts per thousand, deltaDH(2)O from 4.13parts per thousand to 6.95parts per thousand) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 degreesC. In the Santa Barbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 degreesC, respectively), and that for the cassiterite-quartz-veins is 415 degreesC. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (delta(18)O(qtz-H2O)=5.5-6.1parts per thousand) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (delta(18)O(mica-H2O)=33-9.8parts per thousand) suggest mixing with meteoric water. Late muscovite veins (delta(18)O(qtz-H2O)=-6.4parts per thousand) and late quartz (delta(18)O(mica-H2O)=-3.8parts per thousand) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor coluChange in the redox conditions related to mixing-of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paragua Terrane (Bolivia and Mato Grosso regions) and in the Alto Guapore Belt and the Rio Negro-Juruena Province (Rondonia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsas Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paragua Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guapore Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paragua Terrane, and the Colorado Complex and the Nova Mamore Metamorphic Suite in the Alto Guapore Belt. The Paragua Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40-1.36 Ga), and the Teotonio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34-1.36 Ga), and the Sao Lourenco-Caripunas Intrusive Suite (1.31-1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Medio Coreau domain of NE Brazil is located along the northwest margin of Borborema Province, the western branch of a Brasiliano/Pan-African collisional belt that formed during the assembly of Western Gondwana. The early Paleoproterozoic basement of the Medio Coreau domain is composed of migmatitic gneisses and juvenile granulites, overlain by late Paleoproterozoic and Neoproterozoic rocks intruded by syn- to post-tectonic Brasiliano granitoids. According to integrated structural and geochronological data (U-Pb zircon and monazite ages), the Neoproterozoic tectonic evolution of the Medio Coreau is characterized by low-angle thrusting and transcurrent deformation. U-Pb geochronological data from plutons intruded during this compressional regime indicate the collisional evolution began at approximately 622 Ma and continued until about 591 Ma. The continuation of convergence until approximately 560 Ma resulted in the formation of NE-SW and E-W shear zones within the Borborema Province and adjoining West African provinces. The final stage of the ductile tectonism was characterized by uplift and high-angle fault generation between approximately 560 and 545 Ma. The last tectonic event was an extensional phase, resulting in the formation of the Jaibaras graben and intrusion of post-orogenic granites at around 532 Ma. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.
Resumo:
The Borborema province (BP) of northeastern Brazil, located between the São Luís and São Francisco cratons, represents a branching system of Precambrian orogens of the South American platform. It is composed of segments of Archean and Proterozoic crust that were deformed by the convergence of the West African and São Francisco-Congo cratons during assembly of the Brasiliano collage (650 to 500 Ma), a period of intense orogenic activity considered to be the strongest and most pervasive tectonic event that affected the Precambrian of the South American platform. The tectonic and kinematic history of the Brasiliano/Panafrican orogeny is fundamental for reconstructing South American and African Precambrian geology. The correlation between Neoproterozoic tectonic processes occurring in both continents should use structural elements, of regional or local character, with identical kinematic and metamorphic conditions manifested in both basement and supracrustal units. North of the Patos shear zone, subhorizontal Brasiliano thrusts (0.65 to 0.58 Ga) affected the basement and the supracrustal Seridó belt with such related regional D1/D2 structures as foliation, lineation, isoclinal folds, and related metamorphism. Overprinting the previous structures, regional folding with a vertical S3 foliation and an associated strike-slip shear zone were developed (0.58 to 0.52 Ga). The metamorphism is similar for all deformation phases, ranging from upper-greenschist to amphibolite facies with mineral assemblages including biolite and garnet throughout the Seridó fold belt. We propose, on the basis of deformational and kinematic reconstructions, that the structural evolution of the Seridó fold belt was characterized by transition from a syn-collisional to a strike-slip regime. The transition between regimes occurred, progressively or instantaneously, by the switching of the maximum and intermediary strain axes of the strain ellipsoid. The entire tectonic history can be related to a frontal or oblique collision and lateral escape tectonics, with local, syn-collisional transpression and transtension. The Patos shear zone represents a final vertical shearing, juxtaposing different terranes of the northern and southern Borborema province.
Resumo:
Fractal geometry is relevant to understand and explain many natural complex geometries. Using the fractal set concept (fig. 1) many authors have shown that shorelines, landscapes and fractures follow a fractal behaviour. These authors have developed many methods, including the Cantor's Dust Method (CDM) (VELDE et al., 1992), a linear method of analysis adapted for the determination of two-dimensional phenomena. The Itu Granitic Complex (IGC) is a wide granitic body that that crops out at northwest of Cabreuva City, Sao Paulo State (fig. 2) and was affected in its south border by dextral Itu-Jundiuvira Shear Zone (IJSZ) that produced fractures and alignment of feldspars crystals. The different types of fractures (compression, distension and shear) was discriminated from the relationship between them and medium stress ellipsoid of IJSZ (fig. 3). A modified version of CDM was used to study a possible fractal behaviour of the fracture traces in the south border of IGC. The main modification was the use only one direction of analysis (NE/SW). Four parallel profiles were traced with lengths between 9.75km and 12.75km, each one them was divided into six classes of segments (x) with 375m, 500m, 750m, 1.000m, 1.250m and 1.500m. The parameter (N) is provided by he rate between profile length and choiced segment. For each x the number of intervals is counted with at least one event (fracture intersection) which supplied the parameter(n). The n/N rate provide the parameter (p) that represents the relationship between frequency of events and x. And finally the parameters p and x were plotted in a logarithmic graphics (fig. 4) that provide a line with such a declivity (1) which is related to effective dimension (De). In theory, granitics bodies are isotropics and they would have a same fractal dimension in all segments, but the logarithmic graphics (fig. 4) show that fracture traces of IGC has a fractal behaviour in a restrict interval. This fact probably occurs from the passage of a ductil-brittle deformation condition to a more brittle deformation condition of IGC.
Resumo:
Chemical analyses for biotites and their host rocks from the Cabreúva (three facies) and Salto (five facies) intrusions from the multiple-centered rapakivi Itu Complex, State of São Paulo, Brazil, are presented and compared. The Cabreúva intrusion comprises different kinds of mainly even-grained biotite and hornblende-bearing syenogranites, monzogranites and quartz syenites and the Salto intrusion several types of mainly porphyritic biotite syenogranites, some of them hornblende-bearing. The biotites from the Salto intrusion (S-micas) show a more restricted composition than those from the Cabreúva intrusion (C-micas). This reflects the chemical variability of the two bodies which is smaller in the Salto intrusion and larger in the Cabreúva pluton. In the AlIV x Fet/(Fet+Mg) diagram the S- and C-micas show similar AlIV contents, around 2.2-2.3, but C-micas have higher Fet/(Fet+Mg) ratios (0.7-0.9) compared to those of S-micas (0.5-0.6). In the Mg:(Al+Fe+3+Ti):(Fe+2+Mn) diagram the S-micas are defined as Fe+2-biotites and the C-micas occupy the area between the Fe+2-biotites and the siderophyllite/lepidomelane fields, slightly overlapping the latter. In the Al2O3 × FeOt, MgO × FeOt, Al2O3 x MgO and Alt x Mg diagrams, the S-micas always lie on the calc-alkaline/alkaline boundary (or in the subalkaline field) whereas the C-micas systematically plot in the alkaline field, reflecting the higher alkalis content of the Cabreúva intrusion. In the Fet/(Fet+Mg) x SiO2 diagram, the S-micas lie on a smooth line whereas the C-micas from the different facies are separated by distinct chemical gaps reflecting the major or minor chemical overlapping of the facies from the Salto and Cabreúva intrusions.
Resumo:
Recent field investigations and geochronological studies of Neoproterozoic rocks in the northwestern part of the Borborema Province, Ceará State, NE Brazil provide important clues pertaining to the nature of convergence between the Borborema Province and the West African-São Luis craton during the assembly of West Gondwana. U-Pb zircon data indicate that the earliest evidence of convergent magmatism along the northwest margin of the Borborema Province occurred around 777 Ma, and was followed by the development of a large continental arc batholith (Santa Quitéria batholith) between ca. 665 and 591 Ma within the central part of Ceará State. These findings, along with supporting geophysical data, suggest that convergence between the Borborema Province and the West African-São Luis craton involved closure of an oceanic realm with subduction polarity to the southeast beneath the northwestern part of the province. Consequently, it seems likely that the Pharusian Ocean was continuous from the Hoggar Province in West Africa into South America during the late Neoproterozoic and additional data suggests that it may have even been connected with the Goianides Ocean of the Brasília Belt farther to the southwest.