63 resultados para Isoterma de Freundlich
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents a study of the applicability of adsorption isotherms, known as Langmuir and Freundlich isotherm, between the biosorptive interaction of yeast lyophilized Saccharomyces cerevisiae and textile dyes. To that end, we prepared stock solutions of the textile dyes Direct Red 23 and Direct Red 75 in the concentration of 1.000μg/mL and a yeast suspension at 2,5%. We did experiments for two cases, firstly for the case that we have a fix concentration of yeast at 0,500mg/mL and an variable concentration of dye range from40, 50, 60, 80 and 100μg/mL, then for the case that we fixed the concentration of dye at 100μg/mL and the yeast concentration was variable range from 0,250, 0,500, 0,750, 1,000, 1,250mg/mL. For the dye Direct Red 23 we did analysis in the pH 2,5, 4,5 and 6,5; for the Direct Red 75, we just did for the pH 2,5. We leave the dye solution in contact with the yeast for 2 hours at a constant temperature of 30°C and then centrifuged and analyzed the sample in a spectrophotometer and finally made and analysis of parameters for the removal and study of the isotherms. After the biosorption, was observed that for the Direct Red 23 in the pH 2,5 was needed 1,407mg/mL of yeast for total removal, while for the pH 4,5 was needed 8,806mg/mL and in pH 6,5 was 9,286mg/mL; for the Direct Red 75 in pH 2,5 was needed 1,337mg/mL. This difference can be explain by the adsorption isotherms, was observed that in the case when the yeast was fix when we had in a acid pH the behavior of the system was compatible with the Langmuir isotherm, and thus, an monolayer pattern. And that when we decrease the acidity of the medium the system became more compatible with a Freundlich isotherm, and thus, a multilayer pattern; for the case that the yeast was variable this is not much evident, however for the pH 2,5 she became compatible with a Langmuir isotherm... (Complete abstract click electronic access below)
Resumo:
A retenção de Se pelos colóides do solo constitui importante processo para a manutenção da sanidade ambiental. A informação sobre a adsorção de Se em solos altamente intemperizados é restrita e existem poucos padrões quantitativos disponíveis para a definição de estratégias de remediação de áreas contaminadas. Quantidades crescentes de Se (5, 10, 25, 50, 100 e 250 mg L-1), na forma de Na2SeO3, foram adicionadas a amostras de dez Latossolos brasileiros [três Latossolos Vermelho-Amarelos (LVA-1, LVA-2 e LVA-3), dois Latossolos Vermelhos (LV-1 e LV-2), um Latossolo Vermelho eutroférrico (LVef), um Latossolo Vermelho acriférrico (LVwf), dois Latossolos Amarelos (LA-1 e LA-2) e um Latossolo Amarelo acriférrico (LAwf)]. Isotermas de adsorção foram construídas e foi verificado o ajuste dos resultados experimentais aos modelos de Langmuir e de Freundlich. A equação de Langmuir ajustou melhor os resultados de adsorção de Se do que a isoterma de Freundlich. Todas as isotermas apresentaram o formato tipo-L (exponencial), com exceção daquelas obtidas para o LVA-1 e para o LVA-2, que apresentaram comportamento tipo-C (linear). Valores de adsorção máxima (Ads máx), estimada pelo modelo de Langmuir, variaram de 135 (LVA-3) a 2.245 mg kg-1 (LA-1), enquanto os coeficientes de afinidade (K L) estiveram entre 0,002 (LVA-2) e 0,326 (LVA-3). A constante de afinidade estimada pelo modelo de Freundlich (Kf) variou de 13,7 (LVA-2) a 180,1 (LAwf). A adsorção máxima de Se foi mais elevada no LVef e nos Latossolos ácricos (LAwf e LVwf), enquanto os maiores valores de Kf foram encontrados no LV-2, LVef, LVA-3 e LVwf. Não houve correlação entre os atributos dos solos e as constantes de Langmuir. Valores de Kf correlacionaram-se com os teores de argila (r = 0,42*) e com a capacidade de troca de ânions (r = 0,64*).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
A desidratação osmótica é uma etapa essencial na elaboração de produtos de fruta através da Tecnologia dos Métodos Combinados ou de Obstáculos (Hurdle Technology), pois reduz a atividade de água para níveis que, combinando um ou mais obstáculos, aumentam a estabilidade do produto. Neste processo há uma perda de água da fruta para a solução e incorporação de sólidos solúveis pelo produto. Este último fluxo é considerado uma desvantagem do processo pois pode alterar o sabor do produto. Neste trabalho estudou-se a ação de revestimentos comestíveis a base de alginato e gelatina aplicados em abacaxis, previamente à desidratação osmótica, como barreira à incorporação de sólidos solúveis. Os abacaxis com e sem revestimento (controle) foram desidratados em solução de sacarose sob condições isotérmicas. Foram determinadas as isotermas de dessorção de abacaxis revestidos com gelatina, alginato e sem revestimento e os parâmetros cinéticos do processo de desidratação osmótica. Abacaxis revestidos com alginato apresentaram menor velocidade de ganho de sólidos, sem alterar a velocidade de perda de água, quando comparado ao controle.
Resumo:
Experiments on the adsorption of Procion Scarlet MX-G by normal hyphae and by paramorphic colonies of Neurospora crassa were performed at pH 2.5, 4.5 and 6.5 at 30 degrees C. The measured adsorption isotherms were evaluated by the Freundlich and Langmuir equations. The removal of dye was most effective at pH 2.5 and more dye was adsorbed per unit mass of cells in the paramorphic cultures than in the normal hyphae. The statistical tests showed Langmuir's equation to give a better fit to the adsorption data.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Heavy metals are found naturally in soils at low concentrations, but their content may be increased by human activity, making them one of the barriers in management of tropical soils. These chemical elements can be found in the composition of organic and inorganic fertilizers, insecticides, fungicides, mine tailings, and urban waste, and may cause serious damage to the environment and human health. Thus, adsorption studies are essential in assessing the behavior of heavy metals in the soil. The objective of this study was to evaluate the influence of soil chemical, particle size, and mineralogical properties on adsorption of cadmium (Cd), evaluated by Langmuir and Freundlich models, in Latossolos (Oxisols) with or without human activity. Soil samples were collected from the surface layer, 0.00-0.20 m, and chemical, particle size, and mineralogical analyzes were performed. In the adsorption study, concentrations of 0, 5, 25, 50, 100, 200, 300, and 400 mu g L-1 of Cd were used in the form of Cd(NO3)(2). The empirical mathematical models of Langmuir and Freundlich were used for construction of adsorption isotherms. Data were analyzed by means of multivariate statistical techniques, Cluster Analysis and Principal Component Analysis. The data from the adsorption experiment showed a good fit to the Langmuir and Freundlich models. Soils with a lower goethite/hematite ratio and greater cation exchange capacity and pH, showed higher maximum adsorption capacity of Cd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An investigation was made on the adsorption and kinetics of photodegradation of potassium hydrogenphthalate in an aqueous suspension of TiO2. Two models, Langmuir and Freundlich, were used to describe the adsorption process and the model proposed by Langmuir-Hinshelwood (L-H) was employed to describe the kinetics of the photodecomposition reactions of hydrogenphthalate. The results of the adsorptions were fitted to the models proposed by Langmuir and Freundlich. Adsorption was found to be a function of the temperature, with adsorption capacity increasing from 2.4 to 4.5 mg/g when the temperature rose from 20 to 30 degrees C. The kinetic model indicates that the rate constant, k, of the first order reaction, is high in the 10.0 to 100 mg/l interval, which is coherent with the low value of the adsorption constant, K. The results fitted to the L-H model led to an equation that, within the range of concentrations studied here, theoretically allows one to evaluate the photodegradation rate. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL(-1). Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.