16 resultados para Iron chelator
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Low-density seedings of yeast cells of Paracoccidioides brasiliensis give poor growth (as assessed by plating efficiency test) on conventional mycological agar media, and therefore growth-promoting factors for this fungus were sought. Water-extracts of yeast cells of six P. brasiliensis isolates were all considerably effective in promoting the growth of low-density seedings of P. brasiliensis isolates Pb-18 and Hachisuga, but had little effect on isolate Bt-4. Horse serum, at a concentration range of 2-4%, moderately or considerably promoted the growth of these P. brasiliensis isolates. Combinations of the fungus cell extracts with horse serum were highly effective in promoting the growth of all of the fungal isolates. The fungus cell extracts showed siderophore (microbial iron carrier) activity. An iron-chelator, ethylenediaminetetraacetic acid, at a concentration of 100 μM also highly promoted the growth of the fungal isolates in the presence of horse serum, and ferric ion added to culture medium was considerably effective in the growth promotion. These results suggest that deficient utilization of external iron by the fungus cell is one of the growth-limiting processes for low-density seedings of yeast cells of P. brasiliensis on conventional mycological agar media.
Resumo:
The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There is little information on nickel adsorption by Brazilian soils. The objective of this experiment was to determine the effect of pH, organic matter, and iron oxides on nickel adsorption by three soils: a clayey Anionic Rhodic Acrudox, a sandy clay loam Anionic Xanthic Acrudox, and a clayey Rhodic Hapludalf. Soil samples were collected from the 0-0.2 in layer and treated to eliminate organic matter and iron oxides. The nickel adsorption was evaluated in the original samples and in those treated to remove organic matter and to remove both, organic matter and iron oxides, using 2 g soil + 20 mL of 0.01 mol L-1 CaCl2 solution containing 5 mg L-1 Ni, pH varying from 3.5 to 7.5. The nickel adsorption decreased with the elimination of organic matter. For the samples without organic matter and iron oxides, adsorption decreased only in the Anionic Rhodic Acrudox. The pH was the main factor involved in nickel adsorption variation, and for soil samples without organic matter and iron oxides, the maximum adsorption occurred at higher pH values.
Resumo:
Grafting is a technique that may affect plant tolerance to iron chlorosis in plants cultivated for their fruit. Therefore, the objective of this study was to evaluate the tolerance of non-grafted quince seedlings and pear grafted onto quince plants cultivated in pots with alkaline soil. The experiment was conducted in a greenhouse at the University of Cordoba, Spain, in pots (3 L) filled with alkaline soil, with one plant per pot. The treatments consisted of two genotypes, quince (Cydonia oblonga Mill) semi-woody rooted cuttings, cultivar BA29, and pear (Pyrus Communis L.), cultivar Ercolini, grafted onto quince cultivar BA29 (rootstock), and two nutrient solutions with and without iron (80 mu M Fe-EDDHA) arranged in a completely random design with eight repetitions. Each pot received 250 mL of the nutrient solution on June 3rd, 2010. Chlorophyll indirect measurements and the main stem length were evaluated for six weeks after the commencement of the treatments. During the last week, the main stem dry matter weight and the leaf total iron content were determined. It was found that grafting pear seedlings onto quince rootstock resulted in a higher tolerance to iron deficiency than when quince was not grafted. Non-grafted quince plants without iron in the nutrient solution, compared to the results with its application, showed low SPAD (Soil-Plant Analyses Development) values and resulted in plants with a lower leaf iron content and lower dry matter production; however, decreased seedling stem growth was observed only in the last week of cultivation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work presents a methodology for iron determination in fuel ethanol using a modified carbon paste electrode with 1.10 fenantroline/nafion. The electrochemical parameters were optimized for the proposed system and the voltammetric technique of square wave was employed for iron determination. An accumulation time of 5 minutes, such as a 100 mV of pulse magnitude (E(sw)) and frequency (f) of 25 Hz were used as optimized experimental conditions. The modified carbon paste electrode presented linear dependence of amperometric signal with iron concentration in a work range from 6.0x10(-6) until 2.0x10(-5) mol L(-1) of iron, exhibiting a linear correlation coefficient of 0.9884, a detection limit of 2.4 x10(-6) mol L(-1) (n = 3) and amperometric sensibility of 4.5x10(5) mu A/mol L(-1). Analytical curve method was used for iron determination at a commercial fuel sample. Flame atomic absorption spectroscopy was employed as comparative technique.