85 resultados para Ionic conduction in solids
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Synthesis and crystallographic data are reported for low and high temperature forms of LiLa(CrO4)2. The compounds are closely related to lamellar rare earth phosphates and arsenates of sodium and to RbLu(CrO4)2. Lattice parameters of the orthorhombic (low temperature) and monoclinic (high temperature) forms are given. The low temperature form is moisture sensitive and Li+ ions are easily displaced by protons. Thermal decomposition takes place at 250 °C and results in the formation of LiCrO2, LaCrO4, LaCrO3 and Cr2O3. © 1993.
Resumo:
Measurements of 1H Nuclear Magnetic Resonance (NMR) relaxation times, Electron Paramagnetic Resonance (EPR) and AC Impedance Spectroscopy (IS) are reported for composites based on PEO8:LiClO4 and carbon black (CB), prepared by two methods: solvent and fusion processing. Three nuclear relaxation processes were identified for 1H nuclei: (i) belonging to the polymer chains in the amorphous phase, loosely bound to the CB particles, whose dynamics is almost the same as for unfilled polymer, (ii) belonging to the polymer chains which are tightly attached to the CB particles, and (iii) belonging to the crystalline phase in the loose polymer chain. The paramagnetic electronic susceptibility of the composite samples, measured by EPR, was interpreted by assuming a contribution of localized spin states that follow a Curie law, and a Pauli-like contribution of delocalized spins. A significant change of the EPR linewidth was observed at 40 K, which is the temperature where the Curie and Pauli susceptibilities equally contribute to the paramagnetic electronic susceptibility. The electrical properties are very sensitive to the preparation methods of the composites, which conditions the interaction between carbon particle-carbon particle and carbon particle-polymer chain. Classical statistic models to describe the conductivity in these media were not satisfactory. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Two groups of hybrid organic-inorganic composites exhibiting ionic conduction properties, so called ORMOLYTES (organically modified electrolytes), have been prepared by the sol-gel process. The first group has been prepared from mixture of a lithium salt and 3-isocyanatopropyltriethoxysilane(IsoTrEOS),O,O′-bis(2-aminopropyl) polypropyleneglycol. These materials produce chemical bonds between the organic (polymer) and the inorganic (silica) phases. The second group has been prepared by an ultrasonic method from a mixture of tetraethoxysilane (TEOS), polypropyleneglycol and a lithium salt. The organic and inorganic phases are not chemically bonded in these samples. The Li+ ionic conductivity, σ, of all these materials has been studied by AC impedance spectroscopy up to 100°C. Values of σ up to 10-6 Ω-1·cm-1 have been found at room temperature. A systematic study of the effects of lithium concentration, polymer chain length and the polymer to silica weight ratio on σ shows that there is a strong dependence of σ on the preparation conditions. The dynamic properties of the Li+ ion and the polymer chains as a function of temperature between -100 and 120°C were studied using 7Li solid-state NMR measurements. The ionic conductivity of both families are compared and particular attention is paid to the nature of the bonds between the organic and inorganic components.
Resumo:
Lithium intercalation into double rare earth chromates was carried out. It was found that the compounds NaxLi1-xLa(CrO4)2 belong to the NaLa(CrO4)2 structural type and may be recommended as fast ionic conductors. At small values of x a third polymorphous modification of LiLa(CrO4)2 can be stabilized. Attempts to intercalate lithium into CsLa(CrO4)2 lead to collapse of the lamellar network with the formation of LaCrO4 and alkaline chromates. Ion exchange Li+/H+ data are consistent with these considerations. © 1994.
Resumo:
This paper develops a framework for the interpretation of ionic insertion/deinsertion reactions in an aqueous environment taking place in transition-metal hexacyanoferrates of the general formula KhFek3+ [Fe2+ (CN)(6)](l)center dot mH(2)O, also called Prussian Blue. Three different processes were fully separated in the electrochemistry of these films. It was clearly identified that one of these electrochemical processes involves the insertion/deinsertion of H3O+ (hydrated protons) through the channels of the KhFek3+ [Fe2+ (CN)(6)](l) center dot mH(2)O structure to reach the film electroneutrality during the electron transfer between Everitt's Salt and Prussian Blue. The other electrochemical processes involve K+ or H+ (proton) exchange through the water crystalline structure existing in the channels of the KhFek3+ [Fe2+(CN)(6)](l)center dot mH(2)O structure.
Resumo:
The conditionals (K-ps) and thermodynamics (K-ps(o)) solubility products of mercurous acetate have been determined, in aqueous solution, at 25 degrees C and ionic strength (I) comprised between 0.300 and 3.000 mol/L (NaClO4). The investigation was carried out potentiometrically by using a second class electrodes which responds to acetate ions. The values obtained for [pK(ps) (I)] were: 9.49+/-0.08 (0.000); 9.51+/-0.08 (0.300); 9.53+/-0.08 (0.500); 9.54+/-0.08 (0.700); 9.55+/-0.09 (0.900), 9.57+/-0.09 (1.200); 9.59+/-0.10(1.500); 9.61+/-0.10 (1.800); 9.63+/-0.10 (2.100); 9.65+/-0.11 (2.400); 9.67+/-0.11 (2.700) e 9.69+/-0.12 (3.000).
Resumo:
A boundary element method (BEM) formulation to predict the behavior of solids exhibiting displacement (strong) discontinuity is presented. In this formulation, the effects of the displacement jump of a discontinuity interface embedded in an internal cell are reproduced by an equivalent strain field over the cell. To compute the stresses, this equivalent strain field is assumed as the inelastic part of the total strain. As a consequence, the non-linear BEM integral equations that result from the proposed approach are similar to those of the implicit BEM based on initial strains. Since discontinuity interfaces can be introduced inside the cell independently on the cell boundaries, the proposed BEM formulation, combined with a tracking scheme to trace the discontinuity path during the analysis, allows for arbitrary discontinuity propagation using a fixed mesh. A simple technique to track the crack path is outlined. This technique is based on the construction of a polygonal line formed by segments inside the cells, in which the assumed failure criterion is reached. Two experimental concrete fracture tests were analyzed to assess the performance of the proposed formulation.
Resumo:
The conductivity of H2SiF6-doped emeraldine polymers is studied as a function of temperature in the range 50 less than or equal to T less than or equal to 180 K. The dopant concentration of the samples varies between 0.1 M and 1.0 M. The temperature dependence of the do electrical conductivity gives evidence for a transport mechanism based on variable-range hopping in three dimensions. Using Mott's formula for the de conductivity, physically meaningful values of the density of states at the Fermi energy, the hopping energy and hopping distance are calculated.
Resumo:
The purpose of this study was to assess the temporal relationship between pancreas transplant and the development of electrophysiological changes in the sciatic and caudal nerves of alloxan-induced diabetic rats. Nerve conduction studies were performed in diabetic rats subjected to pancreas transplantation at 4, 12, and 24 weeks after diabetes onset, using nondiabetic and untreated diabetic rats as controls. Nerve conduction data were significantly altered in untreated diabetic control rats up to 48 weeks of follow-up in all time points. Rats subjected to pancreas transplantation up to 4 and 12 weeks after diabetes onset had significantly increased motor nerve conduction velocity with improvement of wave amplitude, distal latency, and temporal dispersion of compound muscle action potential in all follow-up periods (P<0.05); these parameters remained abnormal when pancreas transplantation were performed late at 24 weeks. Our results suggest that early pancreas transplant (at 4-12 weeks) may be effective in controlling diabetic neuropathy in this in vivo model.
Resumo:
A series of insoluble, chemically inert and thermally stable compounds La1-xEux(DPP)3 (x = 0.50, 0.20, 0.10, and 0.050; DPP = diphenylphosphinate) was synthesized and characterized by elemental and thermogravimetric analysis, FT Infrared spectroscopy and X-ray powder diffraction. Luminescence spectroscopy at both 77 and 298 K showed changes in the intensity of the hypersensitive transition 5D 0 → 7F2 of Eu3+ which are dependent of the excitation wavelength, suggesting that the europium occupies two different sites in the compounds. The large quantum efficiency and quantum yield, as well as the long radiative lifetime of the 5D0 Eu3+ level of the series of compounds, which are desirable qualities for light-conversion molecular devices, are discussed in terms of the interactions and the energy transfer process between the ligands and the metal ion. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work reports the study of KCl thin films doped with In+ or Tl+. Both systems show optical absorption bands similar to single crystals. As the impurity concentration increases, so does the absorption as also the half band width, unlike in KCl: Cu+ films. Further experimental techniques such as X-ray diffraction, scanning electron micrographs and energy dispersive X-ray observations were used and comparative analysis with KCl : Cu+ films reveals new conditions for better crystallinity of the samples.
Resumo:
Good optical quality Eu3+-doped silica-polyethyleneglycol hybrids were prepared by the sol-gel process. Thermomechanical analysis showed an increase of the glass transition temperature, due to the stiffness of the polymeric network, as the amount of Eu3+ increased. Europium luminescent properties were used to study structural evolution during the sol-gel transition. For lower doping concentrations dried gels present statistical distributions of Eu3+, typical of an amorphous environment, while for higher concentrations a crystalline-like environment of Eu3+ was observed. A broad emission band was observed in the visible part of the electromagnetic spectrum and assigned to the intrinsic emission from the hybrid polymeric network.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)