2 resultados para International relief.

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the aim of this investigation was to evaluate the cervical adaptation of metal crowns under several conditions, namely (1) variations in the cervical finish line of the preparation, (2) application of internal relief inside the crowns, and (3) cementation using different luting materials. Method and Materials: One hundred eighty stainless-steel master dies were prepared simulating full crown preparations: 60 in chamfer (CH), 60 in 135-degree shoulder (OB), and 60 in rounded shoulder (OR). The finish lines were machined at approximate dimensions of a molar tooth preparation (height: 5.5 mm; cervical diameter: 8 mm; occlusal diameter: 6.4 mm; taper degree: 6; and cervical finish line width: 0.8 mm). One hundred eighty corresponding copings with the same finish lines were fabricated. A 30-mu m internal relief was machined 0.5 mm above the cervical finish line in 90 of these copings. The fit of the die and the coping was measured from all specimens (L0) prior to cementation using an optical microscope. After manipulation of the 3 types of cements (zinc phosphate, glass-ionomer, and resin cement), the coping was luted on the corresponding standard master die under 5-kgf loading for 4 minutes. Vertical discrepancy was again measured (L1), and the difference between L1 and L0 indicated the cervical adaptation. Results: Significant influence of the finish line, cement type, and internal relief was observed on the cervical adaptation (P < .001). The CH type of cervical finish line resulted in the best cervical adaptation of the metal crowns regardless of the cement type either with or without internal relief (36.6 +/- 3 to 100.8 +/- 4 mu m) (3-way analysis of variance and Tukey's test, alpha = .05). The use of glass-ionomer cement resulted in the least cervical discrepancy (36.6 +/- 3 to 115 +/- 4 mu m) than those of other cements (45.2 +/- 4 to 130.3 +/- 2 mu m) in all conditions. Conclusion: the best cervical adaptation was achieved with the chamfer type of finish line. The internal relief improved the marginal adaptation significantly, and the glass-ionomer cement led to the best cervical adaptation, followed by zinc phosphate and resin cement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was undertaken in a 1566 ha drainage basin situated in an area with cuesta relief in the state of São Paulo, Brazil. The objectives were: 1) to map the maximum potential soil water retention capacity, and 2) to simulate the depth of surface runoff in each geographical position of the area based on a typical rainfall event. The database required for the development of this research was generated in the environment of the geographical information system ArcInfo v.10.1. Undeformed soil samples were collected at 69 points. The ordinary kriging method was used in the interpolation of the values of soil density and maximum potential soil water retention capacity. The spherical model allowed for better adjustment of the semivariograms corresponding to the two soil attributes for the depth of 0 to 20 cm, while the Gaussian model enabled a better fit of the spatial behavior of the two variables for the depth of 20 to 40 cm. The simulation of the spatial distribution revealed a gradual increase in the depth of surface runoff for the rainfall event taken as example (25 mm) from the reverse to the peripheral depression of the cuesta (from west to east). There is a positive aspect observed in the gradient, since the sites of highest declivity, especially those at the front of the cuesta, are closer to the western boundary of the watershed where the lowest depths of runoff occur. This behavior, in conjunction with certain values of erodibility and depending on the land use and cover, can help mitigate the soil erosion processes in these areas.