7 resultados para Insect protein
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We used light and transmission electron microscopy to examine the morphology of the accessory glands of immature and mature adult males of Apis mellifera L. We also made an electrophoretic analysis of the protein content of the mature gland. The glands of the immature male actively secrete a mucous substance that can be seen in the lumen of the gland of the mature male. This secretion stains with mercury bromophenol blue and with periodic acid-Schiff reaction, which stain glyconjugates. The protein content was higher in the lumen secretion than in the gland wall extracts. The electrophoresis patterns of the wall extracts were different from those of the secretion found in the gland lumen.
Resumo:
Saliva plays important roles in facilitation of a bloodmeal, lubrication of mouthparts, and parasite transmission for some vector insects. Salivary composition changes during the lifetime of an insect, and differences in the salivary profile may influence its functions. In this report, the amount and profile of salivary gland protein of the American visceral leishmaniasis vector Lutzomyia longipalpis (Lutz & Neiva, 1912) were analyzed at different times of insect development and diet. Protein content from unfed female sand flies increased significantly with age, and a significant difference was observed in sugar-fed females during the first 10 d of adult life. Salivary protein content sharply decreased 1 d after blood feeding, with gradual increase in concentration the following days. SDS-polyacrylamide gel electrophoresis analysis revealed that most polypeptides present in the saliva of sugar-fed also were present in the saliva of blood-fed females. Understanding changes in sand fly's saliva contents at distinct days after emergence and the influence of a bloodmeal in this aspect may reveal the role played by saliva during leishmaniasis transmission. © 2008 Entomological Society of America.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The insects of the order Hymenoptera ( bees, wasps, and ants) are classified in two groups, based on their life history: social and solitary. The venoms of the social Hymenoptera evolved to be used as defensive tools to protect the colonies of these insects from the attacks of predators. Generally they do not cause lethal effects but cause mainly inflammatory and/or immunological reactions in the victims of their stings. However, sometimes it is also possible to observe the occurrence of systemic effects like respiratory and/or kidney failure. Meanwhile, the venoms of solitary Hymenoptera evolved mainly to cause paralysis of the preys in order to permit egg laying on/within the prey's body; thus, some components of these venoms cause permanent/transient paralysis in the preys, while other components seem to act preventing infections of the food and future progenies. The peptide components of venoms from Hymenoptera are spread over the molar mass range of 1400 to 7000 da and together comprise up to 70% of the weight of freeze-dried venoms. Most of these toxins are linear polycationic amphipatic peptides with a high content of alpha-helices in their secondary structures. These peptides generally account for cell lysis, hemolysis, antibiosis, and sometimes promote the delivery of cellular activators/mediators through interaction with the G-protein receptor, and perhaps some of them are even immunogenic components. In addition to these peptides, the Hymenopteran venoms also may contain a few neurotoxins that target Na+ and/or Ca+2 channels or even the nicotinic ACh receptor. This review summarizes current knowledge of the biologically active Hymenoptera venoms.
Resumo:
The present study aimed describing the ovaries of the sugarcane spittlebug Mahanarva fimbriolata which are meroistic telotrophic with nurse cells and oocytes located in the tropharium. SEM revealed paired ovaries located dorsolaterally around the intestine, and oocytes exhibiting shapes ranging from round (less developed) to elliptic (more developed), suggesting a simultaneous, although, asynchronous development. Based on histological data we classified the oocytes in stages from I to V. Stage I oocytes exhibit follicular epithelium with cubic and/or prismatic cells, fine cytoplasmic granules. Stage II oocytes present intercellular spaces in the follicular epithelium due to the incorporation of yolk elements from the hemolymph. Small granules are present in the periphery of oocytes while larger granules are observed in the center. Stage III oocytes are larger and intercellular spaces in the follicular epithelium are evident, as well as the interface between follicular epithelium and oocyte. Yolk granules of different sizes are present in the cytoplasm. During this stage, chorion deposition initiates. Stage IV oocytes exhibit squamous follicular cells and larger intercellular spaces when compared to those observed in the previous stage. The oocyte cytoplasm present granular and viscous yolk, the latter is the result of the breakdown of granules. Stage V oocytes exhibit a follicular epithelium almost completely degenerated, smaller quantities of granular yolk and large amounts of viscous yolk. Based on our findings we established the sequence of yolk deposition in M. fimbriolata oocyte as follows: proteins and lipids, which are first produced by endogenous processes in stages I and II oocytes. Exogenous incorporation begins in stage III. In stages I and II oocytes, lipids are also produced by follicular epithelial cells. The third element to be deposited is polysaccharides, mainly found as complexes. Therefore, the yolk present in the oocytes of this species consists of glycolipoproteins. Molecular weights of proteins present in M. fimbriolata oocytes ranged from 10 to 92 KDa, differently from vitellogenin, the most common protein present in insect oocytes, weighing approximately 180 KDa. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Insect mandibular glands are always associated to the mandibles; they are part of the salivary glandular system. The mandibular glands are composed by a reservoir associated to the secretory cells, with each secretory cell connected to the reservoir by means of individual canaliculi. These glands play an important role in the production of pheromones, which are compounds involved in defense, communication, and reproduction of the colony. Mandibular glands of soldiers and major and minor workers of the ant Atta sexdens rubropilosa were processed for different histochemical tests, total protein content, and protein electrophoretic profile determination. The histochemical tests detected the presence of lipids, DNA/RNA, polysaccharides, and proteins at different regions of the gland. The protein electrophoretic profiles showed that the total protein content as well as the number of peptides of each caste follow a progressive order in relation to the size of the individual. Thus, we suggest that the production of secretion is directly linked to the task that the individual performs in the colony.
Resumo:
Recent studies have shown that ingestion by the army worm Spodoptera frugiperda of Cry1Ac toxin from Bt cotton promotes histochemical and ultrastructural changes in the digestive cells of the predatory pentatomid bug Podisus nigrispinus. Therefore, mindful of the changes in the midgut of the predator, which represents the first line of defence in this insect, our aim was to test the hypothesis that the consumption of Bt cotton-fed S. frugiperda by P. nigrispinus might lead to alterations in components of the immune system of P. nigrispinus. The Cry1Ac toxin level in the leaves of Bt cotton, nitric oxide, phenoloxidase activity, and total proteins were quantified by ELISA. Total and differential hemocyte counts were evaluated, and hemocyte ultrastructure analysis was undertaken. We found that ingestion of the prey fed daily with approximately 23 ± 0.70 ng g-1 Cry1Ac by wet weight of leaves, and expressed by the Bt cotton, induces small ultrastructural changes in the predator's granulocytes and plasmatocytes. However, these changes did not affect the total number and differential and humoral variables analyzed for the bug's hemocytes. © 2013 Copyright Taylor and Francis Group, LLC.