16 resultados para Inland navigation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The main objective of this article is to discuss the Brazilian environmental legislation and policies towards the development of navigation and port management. The research illustrated some difficulties faced by the country and make suggestions to overcome it. The construction of the environmental legal framework began in the early 1960s and resulted in a very complex system, as a consequence of policies adopted by the country. Nowadays Brazilian environmental policies are developed in democratic and participative way, although with elevated degree of bureaucracy and lack of integration among the several governmental agencies, which makes the approval of environmental certifications demand several years for new port projects or improvements, which delays the economic development of the country. Efforts have been made to simplify the licensing process. As result of this research two flowchart for environmental licenses of ports installation are shown: The first shows the process until 2009 and the second shows the process nowadays. This become an important issue due the fact that inland navigation is one of the less pollutant modes of transportation, and although, the process of environmental certification was simplified, if compare with 2009, it is still complex and time-consuming, delaying the development of the infrastructure. © 2012 Elsevier Ltd.
Resumo:
This study evaluates the influence of different cartographic representations of in-car navigation systems on visual demand, subjective preference, and navigational error. It takes into account the type and complexity of the representation, maneuvering complexity, road layout, and driver gender. A group of 28 drivers (14 male and 14 female) participated in this experiment which was performed in a low-cost driving simulator. The tests were performed on a limited number of instances for each type of representation, and their purpose was to carry out a preliminary assessment and provide future avenues for further studies. Data collected for the visual demand study were analyzed using non-parametric statistical analyses. Results confirmed previous research that showed that different levels of design complexity significantly influence visual demand. Non-grid-like road networks, for example, influence significantly visual demand and navigational error. An analysis of simple maneuvers on a grid-like road network showed that static and blinking arrows did not present significant differences. From the set of representations analyzed to assess visual demand, both arrows were equally efficient. From a gender perspective, women seem to took at the display more than men, but this factor was not significant. With respect to subjective preferences, drivers prefer representations with mimetic landmarks when they perform straight-ahead tasks. For maneuvering tasks, landmarks in a perspective model created higher visual demands.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Methane and carbon dioxide seasonal cycles during years 1998 and 1999 at two Brazilian urban and inland sites are presented. The mixing ratio averages over the studied period of time were 1.80 ppm CH4 and 384.7 ppm CO2. A comparison is made between continental averages and the averages of the three nearest global network background sites of NOAA-CMDL comprising Ascension Island, Namibia and Easter Island. Inland sites had 0.08 ppm or 4.9% more CH4 and 19.0 ppm or 4.9% more CO2 than background over the same time span. The CH4 summer minimum observed in remote sites was also detected inland. During the month of October 98 and 99 inland mixing ratios were frequently similar to background.
Resumo:
An analysis of covariance relating basin area (A, km2) to river length (L, km) and discharge rate (D, m3 s-1) was performed for two continents and showed that the two covariates (L and D) were highly significant and that the strength of the relationship changed between continents. For comparison, D was excluded but the result remained the same. Although geomorphological models are useful for establishing global levels of production, these regressions should be applied with caution. Historically, simple statistical models were developed to predict fish catches in rivers. These, based upon regression of catches on channel length or basin area for Africa and Central Amazonia, are contrasted in this paper because of their generally similar approach.
Resumo:
This work analyses a real time orbit estimator using the raw navigation solution provided by GPS receivers. The estimation algorithm considers a Kalman filter with a rather simple orbit dynamic model and random walk modeling of the receiver clock bias and drift. Using the Topex/Poseidon satellite as test bed, characteristics of model truncation, sampling rates and degradation of the GPS receiver (Selective Availability) were analysed. Copyright © 2007 by ABCM.
Resumo:
This paper presents the virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, an open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, that is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplish with nonholonomics mobile robots models with diferencial transmission. © 2008 IEEE.
Resumo:
Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.
Resumo:
This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.
ANN statistical image recognition method for computer vision in agricultural mobile robot navigation
Resumo:
The main application area in this project, is to deploy image processing and segmentation techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. Thereby, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for image recognition. Hence, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave computational platforms, along with the application of customized Back-propagation Multilayer Perceptron (MLP) algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of segmented images in which reasonably accurate results were obtained. © 2010 IEEE.
Resumo:
In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.
Resumo:
This work presents and discusses the main topics involved on the design of a mobile robot system and focus on the control and navigation systems for autonomous mobile robots. Introduces the main aspects of the Robot design, which is a holistic vision about all the steps of the development process of an autonomous mobile robot; discusses the problems addressed to the conceptualization of the mobile robot physical structure and its relation to the world. Presents the dynamic and control analysis for navigation robots with kinematic and dynamic model and, for final, presents applications for a robotic platform of Automation, Simulation, Control and Supervision of Mobile Robots Navigation, with studies of dynamic and kinematic modelling, control algorithms, mechanisms for mapping and localization, trajectory planning and the platform simulator. © 2012 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features. Such features are then submitted to a support vector machine in order to find out the most appropriate route. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route. © 2012 IEEE.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)