13 resultados para Industrial emissions

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil has an important role in the biomass burning, with the detection of approximately 100,000 burning spots in a single year (2007). Most of these spots occur in the southern part of the Amazon basin during the dry season (from August to november) and these emissions reach the southeast of the country, a highly populated region and with serious urban air pollution problems. With the growing demand on biofuels, sugarcane is considerably expanding in the state of São Paulo, being a strong contributor to the bad air quality in this region. In the state of São Paulo, the main land use are pasture and sugarcane crop, that covers around 50% and 10% of the total area, respectively. Despite the aerosol from sugarcane burning having reduced atmospheric residence time, from a few days to some weeks, they might get together with those aerosol which spread over long distances (hundreds to thousands of kilometers). In the period of June through February 2010 a LIDAR observation campaign was carried in the state of São Paulo, Brazil, in order to observe and characterize optically the aerosols from two distinct sources, namely, sugar cane biomass burning and industrial emissions. For this purpose 2 LIDAR systems were available, one mobile and the other placed in a laboratory, both working in the visible (532 nm) and additionally the mobile system had a Raman channel available (607 nm). Also this campaign counted with a SODAR, a meteorological RADAR specially set up to detect aerosol echoes and gas-particle analyzers. To guarantee a good regional coverage 4 distinct sites were available to deploy the instruments, 2 in the near field of biomass burning activities (Rio Claro and Bauru), one for industrial emissions (Cubatão) and others from urban sources (São Paulo). The whole campaign provide the equivalent of 30 days of measurements which allowed us to get aerosol optical properties such as backscattering/extinction coefficients, scatter and LIDAR ratios, those were used to correlate with air quality and meteorological indicators and quantities. In this paper we should focus on the preliminary results of the Raman LIDAR system and its derived aerosol optical quantities. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experimental data on the precipitation chemistry in the semi-arid savanna of South Africa is presented in this paper. A total of 901 rainwater samples were collected with automatic wet-only samplers at a rural site, Louis Trichardt, and at an industrial site, Amersfoort, from July 1986 to June 1999. The chemical composition of precipitation was analysed for seven inorganic and two organic ions, using ion chromatography. The most abundant ion was SO(4)(2-) and a large proportion of the precipitation is acidic, with 98% of samples at Amersfoort and 94% at Louis Trichardt having a pH below 5.6 ( average pH of 4.4 and 4.9, respectively). This acidity results from a mixture of mineral and organic acids, with mineral acids being the primary contributors to the precipitation acidity in Amersfoort, while at Louis Trichardt, organic and mineral acids contribute equal amounts of acidity. It was found that the composition of rainwater is controlled by five sources: marine, terrigenous, nitrogenous, biomass burning and anthropogenic sources. The relative contributions of these sources at the two sites were calculated. Anthropogenic sources dominate at Amersfoort and biomass burning at Louis Trichardt. Most ions exhibit a seasonal pattern at Louis Trichardt, with the highest concentrations occurring during the austral spring as a result of agricultural activities and biomass combustion, while at Amersfoort it is less pronounced due to the dominance of relatively constant industrial emissions. The results are compared to observations from other African regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical remote sensing techniques have obvious advantages for monitoring gas and aerosol emissions, since they enable the operation over large distances, far from hostile environments, and fast processing of the measured signal. In this study two remote sensing devices, namely a Lidar (Light Detection and Ranging) for monitoring the vertical profile of backscattered light intensity, and a Sodar (Acoustic Radar, Sound Detection and Ranging) for monitoring the vertical profile of the wind vector were operated during specific periods. The acquired data were processed and compared with data of air quality obtained from ground level monitoring stations, in order to verify the possibility of using the remote sensing techniques to monitor industrial emissions. The campaigns were carried out in the area of the Environmental Research Center (Cepema) of the University of São Paulo, in the city of Cubatão, Brazil, a large industrial site, where numerous different industries are located, including an oil refinery, a steel plant, as well as fertilizer, cement and chemical/petrochemical plants. The local environmental problems caused by the industrial activities are aggravated by the climate and topography of the site, unfavorable to pollutant dispersion. Results of a campaign are presented for a 24- hour period, showing data of a Lidar, an air quality monitoring station and a Sodar. © 2011 SPIE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the first satellite observation of intercontinental transport of nitrogen oxides emitted by power plants, verified by simulations with a particle tracer model. The analysis of such episodes shows that anthropogenic NOx plumes may influence the atmospheric chemistry thousands of kilometers away from its origin, as well as the ocean they traverse due to nitrogen fertilization. This kind of monitoring became possible by applying an improved algorithm to extract the tropospheric fraction of NO2 from the spectral data coming from the GOME instrument.As an example we show the observation of NO2 in the time period 4-14 May, 1998, from the South African Plateau to Australia which was possible due to favourable weather conditions during that time period which availed the satellite measurement. This episode was also simulated with the Lagrangian particle dispersion model FLEXPART which uses NOx emissions taken from an inventory for industrial emissions in South Africa and is driven with analyses from the European Centre for Medium-RangeWeather Forecasts. Additionally lightning emissions were taken into account by utilizing Lightning Imaging Sensor data. Lightning was found to contribute probably not more than 25% of the resulting concentrations. Both, the measured and simulated emission plume show matching patterns while traversing the Indian Ocean to Australia and show great resemblance to the aerosol and CO2 transport observed by Piketh et al. (2000).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cogeneration system design deals with several parameters in the synthesis phase, where not only a thermal cycle must be indicated but the general arrangement, type, capacity and number of machines need to be defined. This problem is not trivial because many parameters are considered as goals in the project. An optimization technique that considers costs and revenues, reliability, pollutant emissions and exergetic efficiency as goals to be reached in the synthesis phase of a cogeneration system design process is presented. A discussion of appropriated values and the results for a pulp and paper plant integration to a cogeneration system are shown in order to illustrate the proposed methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The waters of Corumbataí River in the middle and eastern part of São Paulo State, Brazil, are extensively used for human consumption; their water quality has been modified mainly due to increasing pressure caused by population growth, accompanied by a more accentuated industrial development for the whole São Paulo State in the early 1970s. The Corumbataí River basin has, over time, received significant emissions of municipal waste products and discharges of wastewater, sludge, sewage, sanitary and industrial effluents, but the first effluent treatment plant at Rio Claro city was only inaugurated at the end of the 1990s. Data on river water quality from two widely spaced locations in the Corumbataí River basin are reported in this paper; they indicate the need for continuous initiatives and efforts by decision makers in order to improve and preserve the water quality in the basin for the 21st century. Copyright © 2007 IAHS Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] Surface-based measurements of atmospheric formic acid (HCOOH), acetic acid (CH3COOH), sulfur dioxide (SO2), hydrogen chloride (HCl), and nitric acid (HNO3) were made in central São Paulo State, Brazil, between April 1999 and March 2000. Mean concentrations were 9.0 ppb (HCOOH), 1.3 ppb (CH3COOH), 4.9 ppb (SO2), 0.3 ppb (HCl), and 0.5 ppb (HNO3). Concentrations in sugar cane burning plumes were 1160-4230 ppb (HCOOH), 360-1750 ppb (CH3COOH), 10-630 ppb (SO2), 4-210 ppb (HCl), and 14-90 ppb (HNO3). Higher ambient concentrations of SO2, HCl and HNO3 were measured during the burning season (May-November). Concentrations of SO2 and HCl increased during the evening, and of HCOOH and CH3COOH were lowest in the morning, with peak levels in the afternoon. Ratios obtained between different species showed either nighttime maxima (SO2/HCOOH, SO2/CH3COOH, SO2/HNO3, CH3COOH/HNO3, SO2/HCl and HCOOH/HNO3), daytime maxima (HCOOH/HCl, CH3COOH/HCl and HNO3/HCl), or no clear trends (HCOOH/CH3COOH). Correlation analysis showed that SO2 and HCl were primary emissions from biomass burning and road transport; HCOOH, HNO3 and CH3COOH were products of photochemistry; HCOOH and CH3COOH were emitted directly during combustion as well as from biogenic sources. Biomass burning affected atmospheric acidity on a regional scale, while vehicular emissions had greater impact in urban and adjacent areas. Atmospheric ammonia levels were insufficient to neutralize atmospheric acidity, which was mainly removed by deposition to the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most primal ways of human work already known is the tessellation and ginning for the production of fabric and clothing - what used to be, back in those days, statement of power and status. The arrival of the Industrial Revolution - in the middle of the XVIII century at Britain - increased the textile industry production, and what used to be manufactured and hard to obtain, starts then to be produced in mechanical ways and large-scale. Despite all the boost given to the economy of an expanding capitalist market, it should be pointed out the consequences of this major industrialization, especially the environmental ones, more and more concerning nowadays. The emissions of waste - that sometimes could be toxic - in effluents can possibly contaminate the aquatic ecosystems, causing a huge damage to its fauna and flora, affecting therefore all the biodiversity, reaching inclusively the humans. To avoid these problems, a few strategies have been taking place in the attempt to eliminate - or at least reduce - the amount of dye found in the effluents, and as the textile industry constantly leaves waste, efficient methods - that present good results in a short period of time - with a low cost are needed. The present study will test the bioremoval capacity of yeast (Saccharomyces cerevisiae) in contact with dyes in a fix concentration, diluted in water with three different pH values. The tests will be done duplicate, and after the concentration analyses - made by spectrophotometry - it will be analyzed which pH shows major efficiency in the dye removal and what is the influence of the biomass in this process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article evaluates the efficiency of Brazil's industrial sectors from 1996 to 2009, taking into account energy consumption and respective contributions to the country's economic and social aspects. This analysis used a mathematical programming method called Data Envelopment Analysis (DEA), which enabled, from the SBM model and the window analysis, to evaluate the ability of industries to reduce energy consumption and fossil-fuel CO2 emissions (inputs), as well as to increase the Gross Domestic Product (GDP) by sectors, the persons employed and personnel expenses (outputs). The results of this study indicated that the Textile sector is the most efficient industrial sector in Brazil, according to the variables used, followed by these sectors: Foods and Beverages, Chemical, Mining, Paper and Pulp, Nonmetallic and Metallurgical.