23 resultados para Induced Ovulation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A method is described for spawning the economically important Brazilian characin species Colossoma mitrei. Ovulation was induced using a priming injection of 0.2 mg/kg partially purified gonadotropin SG-G100 followed at 8 h by injecting an extract of 20 mg/kg acetone-dried chum salmon pituitary powder. Spermiation was induced in the male using a similar primer followed by 14 mg/kg acetone-dried chum salmon pituitary powder. Eggs were successfully fertilized and incubated at 25-26°C. Hatching occurred at 20.5 h and a survival of 10% to fingerling size was achieved. © 1981.
Resumo:
A series of experiments with Holstein heifers was conducted to develop the capability of inducing accessory corpus luteum (CL) with a GnRH agonist (Buserelin, 8 mu g; GnRHa) or hCG; (3,000 IU) to increase plasma progesterone concentrations (Exp. 1, 2, and 3) and to test whether induction of accessory CL with hCG will increase conception rates in heifers (Exp. 4) and lactating cows (Exp. 5). In Exp. 1, heifers were treated on d 5 after estrus with GnRHa (n = 8) or saline (n = 7); heifers in Exp. 2 received hCG (n = 5) or saline (n = 4) on d 5. Experiment 3 allowed a contemporary evaluation of heifers treated on d 5 with GnRHa (n = 6), hCG (n = 6), saline (n = 6), or GnRHa at d 5 and hCG at the time of the induced ovulation (n = 5). The GnRHa and hCG were equally effective in inducing an accessory CL (93% induction rate), but the subsequent increase in progesterone concentrations was greater in hCG-treated heifers. A greater half life of hCG may provide longer LH-like stimulation of the first-wave follicle and subsequent developing accessory CL or a greater luteotropic effect on the original CL. Induction of an accessory CL with hCG on d 5 or 6 after insemination did not increase pregnancy rates in fertile heifers (Exp. 4: hCG = 64.8% vs control = 62.9%; n = 243) or lactating dairy cows during summer heat stress (Exp. 5: hCG = 24.2% vs control = 23.5%; n = 201).
Resumo:
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B®) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V® 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin®, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean ± S.E.M.) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8 ± 1.8, 6.1 ± 1.3, 51.5), P48 (12.6 ± 1.9, 7.1 ± 1.0, 52.3), P60 (10.5 ± 1.6, 5.7 ± 1.3, 40.0) and D60 (10.3 ± 1.7, 5.0 ± 1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol. © 2002 Elsevier B.V. All rights reserved.
Resumo:
Four experiments were conducted to evaluate hormonal strategies to induce ovulation in Nellore heifers. In experiment 1, heifers (N = 1039) received a controlled internal drug release (CIDR) of fourth use (CIDR-4) on Day -12 or no CIDR (CIDR-0). The CIDR was removed on Day 0 in the CIDR-4 treatment, and estrus detection and AI were performed from Days 1 to 7. On Day 8, heifers not detected in estrus were evaluated for CL presence and received the same treatment again, followed by estrus detection and AI from Days 21 to 27. All heifers in experiments 2 (N = 896), 3 (N = 839), and 4 (N = 948) received the CIDR-4 treatment on Day -12. In experiment 2, heifers were randomly assigned to a control group (no additional treatment) or to receive equine chorionic gonadotropin (eCG; 200 IU eCG im) on Day 0. In experiment 3, heifers received the same treatments as in experiment 2, or a treatment that included eCG and estradiol cypionate (ECP) (eCG+ECP; 200 IU im eCG plus 0.5 mg ECP im) on Day 0. In experiment 4, heifers received the treatments described in experiment 3 or only ECP (0.5 mg) on Day 0. In experiments 2 and 3, estrus detection and AI was performed from Days 1 to 7 and on Day 8, heifers not detected in estrus were evaluated for CL presence. In experiment 4, heifers were evaluated for presence of a CL between Days 10 and 14. In experiment 1 heifers treated with CIDR-4 had greater estrus detection, ovulation induction, and pregnancy rates than in the CIDR-0 group. In experiment 2, heifers treated with eCG had greater estrus detection, ovulation induction, and pregnancy rates in 7 days than heifers in the control group. In experiment 3, heifers treated with eCG+ECP had greater estrus detection, ovulation induction, and pregnancy rates than the control and eCG treatments. In experiment 4, ovulation induction was greater for heifers treated with eCG and eCG+ECP relative to control, but did not differ from the ECP treatment. In conclusion, the use of a CIDR of fourth use for 12 days and the addition of eCG and/or ECP at CIDR removal efficiently induced ovulation and increased pregnancy rates in prepubertal Nellore heifers. © 2013 Elsevier Inc.
Resumo:
The objective of the current study was to evaluate the effect of GnRH early postpartum on induction of ovulation, uterine health, and fertility in dairy cows. Holstein cows without a corpus luteum (CL) at 17 +/- 3 DIM were assigned randomly to receive i.m. GnRH (n = 245) at 17 +/- 3 and 20 +/- 3 DIM or remain as controls (n = 245). Ovaries were scanned by ultrasonography twice weekly totaling 4 examinations. Ovulation was characterized by the appearance of a CL >= 20 mm at any ultrasound or CL <20 mm in 2 consecutive examinations. Clinical and cytological endometritis were diagnosed at 35 DIM. Compared with control, GnRH increased ovulation up to 3.5 d after the last treatment (78.7 vs. 45.0%) and did not affect the prevalence of clinical endometritis (23.9 vs. 18.6%) or cytological endometritis (30.9 vs. 32.8%). Prevalence of clinical endometritis increased in cows that had calving problems (32.6 vs. 15.9%) and metritis (40.6 vs. 15.8%). Metritis increased prevalence of cytological endometritis (50.7 vs. 23.5%). Treatment with GnRH did not affect pregnancy per artificial insemination at 32 (37.6 vs. 38.6%) or 74 d after artificial insemination (35.0 vs. 31.5%), but reduced pregnancy loss (6.8 vs. 18.1%). No overall effect of GnRH treatment on hazard of pregnancy was observed; however, an interaction between GnRH treatment and ovulation showed that GnRH-treated cows that ovulated had increased hazard of pregnancy by 300 DIM compared with GnRH-treated and control cows that did not ovulate (hazard ratio = 2.0 and 1.3, respectively), but similar to control cows that ovulated (hazard ratio = 1.1). Gonadotropin-releasing hormone early postpartiim induced ovulation without affecting uterine health, but failed to improve pregnancy per artificial insemination or time to pregnancy, although it reduced pregnancy loss.
Resumo:
The objective of experiment 1 was to evaluate the effects of treatments with human chorionic gonadotropin (hCG) or GnRH 7 d after induced ovulation on reproductive performance of lactating dairy cows submitted to timed artificial insemination (TAI) or timed embryo transfer (TET). A total of 834 potential breedings were used from 661 lactating Holstein cows (37.3 +/- 0.3 kg of milk/d). Cows had ovulation synchronized and were assigned randomly to receive TAI on d 0 or TET on d 7. Within each group, cows were assigned randomly to receive on d 7 no additional treatment (control; n(TAI) = 156; n(TET) = 126), a 100 mu g i.m. injection of GnRH (n(TAI) = 155; n(TET) = 124), or a 2,500 TU i.m. injection of hCG (ITA = 151; n(TET) = 122). Postbreeding treatment affected the percentages of pregnant cows at TET on d 28 (control: 38.1%; GnRH: 52.4%; hCG: 45.1%) and on d 60 (control: 32.5%; GnRH: 41.1%; hCG: 38.5%), but postbreeding treatment did not affect percentages of pregnant cows at TAT on d 28 (control: 30.1%; GnRH: 32.2%; hCG: 32.4%) or on d 60 (control: 25.6%; GnRH: 27.1%; hCG: 29.8%). The objective of experiment 2 was to evaluate the effect of a treatment with GnRH 7 d after TET on reproductive performance of lactating dairy cows that received a previous GnRH treatment at TET. A total of 285 potential breedings were used from 257 lactating Holstein cows (35.1 +/- 0.8 kg of milk/d). Cows had ovulation synchronized and were assigned for TET on d 7. Immediately after TET, all cows were treated with a 100 mu g i.m. injection of GnRH. on d 14, cows were assigned randomly to receive (G7-14; n = 147) or not (G7; n = 138) an additional injection of GnRH. Pregnancy diagnosis were performed on d 28 and 60. The additional treatment with GnRH on d 14 did not affect the percentages of pregnant cows on d 28 (G7: 48.5%; G7-14: 42.9%) or on d 60 (G7: 39.8%; G7-14: 37.4%). In conclusion, treatment with GnRH or hCG 7 d after induced ovulation increased conception rates in lactating dairy cows submitted to TET, but not in cows submitted to TAI. Moreover, treatment with GnRH 7 d after TET did not enhance reproductive performance of lactating dairy cows that received a previous GnRH treatment at TET.
Resumo:
Selection of dominant follicles in cattle is associated with a deviation in growth rate between the dominant and largest subordinate follicle of a wave (diameter deviation). To determine whether acquisition of ovulatory capacity is temporally associated with diameter deviation, cows were challenged with purified LH at known times after a GnRH-induced LH surge (experiment 1) or at known follicular diameters (experiments 2 and 3). A 4-mg dose of LH induced ovulation in all cows when the largest follicle was greater than or equal to 12 mm (16 of 16), in 17% (1 of 6) when it was 11 mm, and no ovulation when it was less than or equal to 10 mm (0 of 19). To determine the effect of LH dose on ovulatory capacity, follicular dynamics were monitored every 12 h, and cows received either 4 or 24 mg of LH when the largest follicle first achieved 10 mm in diameter (experiment 2). The proportion of cows ovulating was greater (P < 0.05) for the 24-mg (9 of 13; 69.2%) compared with the 4-mg (1 of 13; 7.7%) LH dose. To determine the effect of a higher LH dose on follicles near diameter deviation, follicular dynamics were monitored every 8 h, and cows received 40 mg of LH when the largest follicle first achieved 7.0, 8.5, or 10.0 mm (experiment 3). No cows with a follicle of 7 mm (0 of 9) or 8.5 mm (0 of 9) ovulated, compared with 80% (8 of 10) of cows with 10-mm follicles. Thus, follicles acquired ovulatory capacity at about 10 mm, corresponding to about 1 day after the start of follicular deviation, but they required a greater LH dose to induce ovulation compared with larger follicles. We speculate that acquisition of ovulatory capacity may involve an increased expression of LH receptors on granulosa cells of the dominant follicle and that this change may also be important for further growth of the dominant follicle.
Resumo:
Objectives were to investigate progesterone concentrations and fertility comparing 2 different intervals from PGF2α treatment and induced ovulation in an estrogen-based ovulation synchronization protocol for timed artificial insemination (TAI) or timed embryo transfer (TET) in lactating dairy cows. A total of 1,058 lactating Holstein cows [primiparous (n=371) and multiparous (n=687)], yielding 34.1±0.33 kg of milk/d at various days in milk were randomly assigned to receive treatment with PGF2α on either d 7 or 8 of the following protocol: d 0: 2mg of estradiol benzoate + controlled internal drug release device; d 8: controlled internal drug release device removal + 1.0mg of estradiol cypionate; d 10: TAI or d 17: TET. Only cows with a corpus luteum at d 17 received an embryo and all cows received GnRH at TET. Pregnancy diagnoses were performed by detection (transrectal ultrasonography) of an embryo on d 28 or a fetus on d 60. Fertility [pregnancy per artificial insemination (P/AI) or pregnancy per embryo transfer (P/ET)] was affected by breeding technique (AI vs. ET) and time of PGF2α treatment (d 7 vs. 8) at the 28-d pregnancy diagnosis for TAI [32.9% (238) vs. 20.6% (168)] and TET cows [47% (243) vs. 40.7% (244)] and at the 60-d pregnancy diagnosis for TAI [30% (238) vs. 19.2% (168)] and TET cows [37.9% (243) vs. 33.5% (244)]. The progesterone (P4) concentration at d 10 altered fertility in TAI cows, with higher P/AI in cows with P4 concentration <0.1 ng/mL compared with cows with P4 concentration ≥0.1 ng/mL, and in ET cows, with higher P/ET in cows with P4 concentration <0.22 ng/mL compared with cows with P4 concentration ≥0.22 ng/mL. Prostaglandin F2α treatment at d 7 increased the percentage of cows with P4 <0.1 ng/mL on d 10 [39.4 (85) vs. 23.2 (54)]. Reducing the period between PGF2α and TAI from 72 to 48h in dairy cows resulted in a clear reduction in fertility in cows bred by TAI and a subtle negative effect in cows that received TET. The earlier PGF2α treatment benefits are most likely mediated through gamete transport, fertilization, or early embryo development and a more subtle effect of earlier PGF2α treatment that may be mediated through changes in the uterine or hormonal environment that manifests itself after ET on d 7. © 2013 American Dairy Science Association.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Estrous behavior and the estrus-to-ovulation interval are essential for estimating the best time to artificially inseminate cattle. Because these parameters are not well characterized in the Nelore breed (Bos indicus), the main purpose of the this study was to determine the estrus-to-ovulation interval in Nelore heifers and cows with natural estrus or with estrus induced by treatments with PGF2 alpha or norgestomet and estradiol valerate (NEV). The cows and heifers were observed continuously (24 h a day) to determine the onset of estrus and to study estrous behavior in the cows. Ten hours after the start of estrus the ovaries were scanned every 2 h by ultrasonography to monitor the dominant follicle until ovulation. Blood samples were collected periodically to determine progesterone levels by RIA. Administration of PGF2 alpha (2 injections, 11 days apart) did not induce estrus in most Nelore females in spite of the presence of functional CL, indicated by progesterone concentrations above 6.0 ng/ml in 25 of 28 animals. Treatment with NEV induced high sexual receptivity in cows (10/11), but only 66% ovulated. Cows with natural or induced estrus exhibited behavioral estrus of 10.9 +/- 1.4 h, and ovulation occurred 26.6 +/- 0.44 h (n = 26) after the onset of estrus. In most of the cows (53.8%) estrus began at night (between 1801 and 600 h), and 34.6% it started and finished during the night. It is concluded that in Nelore females ovulation occurs approximately 26 h after the onset of estrus. Additionally, estrous behavior is shorter than in European breeds, and there is a high incidence of estrus at night, which makes it difficult to detect and, consequently, impairs Al in Nelore cattle. The observation that a high percentage of Nelore females with an active CL did not respond to usual dosages of PGF2 alpha warrants further investigation. (C) 1998 by Elsevier B.V.
Resumo:
In the months of January 2001 and 2002, female cachara Pseudoplatystoma fasciatum were selected during their first and second gonadal maturation (2 years and 7 months old and 3 years and 7 months old, respectively) with an of oocyte diameter of 937.5 mum (82.5% with central nuclei and 17.5% with peripheral nuclei). Nine females in first maturation received two doses of carp pituitary extract (CPE), 0.5 mg/kg and 5.0 mg/kg; seven received two doses of human chorionic gonadotropin (hCG), 5 and 10 IU/g; five received doses of 0.5 CPE mg/kg and 5 hCG IU/g (CPE+hCG); and four received 0.9% saline (saline). Nine females from CPE and seven from hCG presented oocytes with the same diameter at the moment of oocyte release (100% with germinal vesicle breakdown and fertilization rate of 53.44 +/- 18.3 and 54.81 +/- 11.8%; larvae number of 165,330 +/- 94.1 and 158,570 +/- 20.6, respectively). The five females from CPE+hCG did not respond to the hormonal treatment. The four females from the saline group did not ovulate. In January 2002, 6 of 15 selected females that were going through the second reproductive cycle received CPE (five received hCG and four received saline), showing oocyte diameters similar to the ones in the first maturation. At stripping, CPE females had an oocyte diameter of 1062.5 mum (the hCG females had oocyte diameters ranging from 937.5 to 1125.0 mum; fertilization rates of 56.08 +/- 30.9 and 81.90 +/- 17.3%; 364,547 +/- 244 and 633,129 +/- 190, larvae, respectively). The fertilization rates and larvae number were higher in the second gonad maturation, both for CPE and hCG. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
It was analyzed in this work the influence of photoperiod on time interval from ovulation induction period to extrusion of ovocits in female bullfrogs (Lithobates catesbeianus). It was used 54 females reared from metamorphosis to 9 months of age under three photoperiods: dark time (DL 0:24), 16 hours of daylight (DL 16:8) and 12 hours of daylight (DL 12:12). Ovulation was induced by intramuscular application of two doses of LHRHa with 12 hours of interval between the injections. After 10, 25, 28, 31, 34 and 37 hours from the first hormone injection, 10-gram samples (3,000 eggs) were extracted from each female at each time interval and fertilized. Egg hatching rate was checked in each sample 72 hours after fertilization. Analysis of variance showed a significant effect of extrusion delay and the interaction between photoperiod and this delay. Extrusion should be carried out 33, 24 and 26 hours after the first hormone dosage in females reared in environments without light, with 12 hours of daylight and with 16 hours of daylight, respectively, to obtain the maximum fertilization rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The follicular development was evaluated in ovine females during natural and prostaglandin-F(2 alpha) (PG) induced estrous cycle. Ewes were randomly divided in two treatments (n=7/treatment): T1 with natural cycle and T2 synchronized with two injections of PG. From one day before PG injection until next ovulation, daily transrectal ultrasonography was done. All follicles >= 2 mm were assessed. During the interovulatory intervals, follicular growth and regression occurred in a wave like pattern (2-3 waves). The maximum diameter of the largest follicle of the first wave was greater in T1 (5.83 +/- 0.31 mm) compared with T2 (5.0 +/- 0.1 mm; P<0.01), but there was no significant difference among the emergency day of largest follicle, during the growth phase of the follicular waves. The duration of the plateau phase in wave 2 differed between the two treatments (P<0.05) showing 0.83 +/- 0.31 and 1.83 +/- 0.17 d, for natural and synchronized treatment, respectively. Growth rate did not differ between treatments. Presence of new luteal tissue was detected on day 3 after ovulation. In conclusion, the follicular development was similar in female ovine during natural and PG induced estrous cycle.