146 resultados para Independente component analysis
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper characterizes humic substances (HS) extracted from soil samples collected in the Rio Negro basin in the state of Amazonas, Brazil, particularly investigating their reduction capabilities towards Hg(II) in order to elucidate potential mercury cycling/volatilization in this environment. For this reason, a multimethod approach was used, consisting of both instrumental methods (elemental analysis, EPR, solid-state NMR, FIA combined with cold-vapor AAS of Hg(0)) and statistical methods such as principal component analysis (PCA) and a central composite factorial planning method. The HS under study were divided into groups, complexing and reducing ones, owing to different distribution of their functionalities. The main functionalities (cor)related with reduction of Hg(II) were phenolic, carboxylic and amide groups, while the groups related with complexation of Hg(II) were ethers, hydroxyls, aldehydes and ketones. The HS extracted from floodable regions of the Rio Negro basin presented a greater capacity to retain (to complex, to adsorb physically and/or chemically) Hg(II), while nonfloodable regions showed a greater capacity to reduce Hg(II), indicating that HS extracted from different types of regions contribute in different ways to the biogeochemical mercury cycle in the basin of the mid-Rio Negro, AM, Brazil. (c) 2007 Published by Elsevier B.V.
Resumo:
This work describes an application of principal component analysis (PCA) on a database of secondary metabolites from the Asteraceae family. The numbers of occurrences of metabolites in 11 chemical classes for the different vibes of the family were used as variables, PCA allows the identification of chemical classes that contribute most to the subgroups classification within the family. Relationships between chemical composition and botanical classification were made. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Phenotypic data from female Canchim beef cattle were used to obtain estimates of genetic parameters for reproduction and growth traits using a linear animal mixed model. In addition, relationships among animal estimated breeding values (EBVs) for these traits were explored using principal component analysis. The traits studied in female Canchim cattle were age at first calving (AFC), age at second calving (ASC), calving interval (CI), and bodyweight at 420 days of age (BW420). The heritability estimates for AFC, ASC, CI and BW420 were 0.03±0.01, 0.07±0.01, 0.06±0.02, and 0.24±0.02, respectively. The genetic correlations for AFC with ASC, AFC with CI, AFC with BW420, ASC with CI, ASC with BW420, and CI with BW420 were 0.87±0.07, 0.23±0.02, -0.15±0.01, 0.67±0.13, -0.07±0.13, and 0.02±0.14, respectively. Standardised EBVs for AFC, ASC and CI exhibited a high association with the first principal component, whereas the standardised EBV for BW420 was closely associated with the second principal component. The heritability estimates for AFC, ASC and CI suggest that these traits would respond slowly to selection. However, selection response could be enhanced by constructing selection indices based on the principal components. © CSIRO 2013.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed: 1) to classify ingredients according to the digestible amino acid (AA) profile; 2) to determine ingredients with AA profile closer to the ideal for broiler chickens; and 3) to compare digestible AA profiles from simulated diets with the ideal protein profile. The digestible AA levels of 30 ingredients were compiled from the literature and presented as percentages of lysine according to the ideal protein concept. Cluster and principal component analyses (exploratory analyses) were used to compose and describe groups of ingredients according to AA profiles. Four ingredient groups were identified by cluster analysis, and the classification of the ingredients within each of these groups was obtained from a principal component analysis, showing 11 classes of ingredients with similar digestible AA profiles. The ingredients with AA profiles closer to the ideal protein were meat and bone meal 45, fish meal 60 and wheat germ meal, all of them constituting Class 1; the ingredients from the other classes gradually diverged from the ideal protein. Soybean meal, which is the main protein source for poultry, showed good AA balance since it was included in Class 3. on the contrary, corn, which is the main energy source in poultry diets, was classified in Class 8. Dietary AA profiles were improved when corn and/or soybean meal were partially or totally replaced in the simulations by ingredients with better AA balance.
Resumo:
O conceito de superfície geomórfica permite uma interligação entre os diferentes ramos da ciência do solo, tais como geologia, geomorfologia e pedologia. Esta associação favorece a compreensão da distribuição espacial dos solos na paisagem, e torna possível compreender o comportamento dos atributos do solo, que estão principalmente relacionadas com a estratigrafia e formas do relevo. Assim, este estudo visa à aplicação da estatística multivariada para categorizar superfícies geomórficas em uma litossequência arenito-basalto, de modo a fornecer uma base para a avaliação do solo em áreas afins. A área de estudo está localizada no município de Pereira Barreto, São Paulo, Brasil. A área escolhida possui 530 hectares, onde foram localizadas e mapeadas três superfícies geomórficas (I, II e III). Na área, 134 amostras foram coletadas nas profundidades de 0,0-0,2 m e 0,8-1,0 m, foram determinados os conteúdos de areia, silte e argila, pH em CaCl2, conteúdo de MO, P, Ca, Mg, K, Al e H+Al. Com base nos resultados, foram realizadas a análise univariada e multivariada de variância, clusters e principal componente, a fim de comparar as três superfícies geomórficas. A análise estatística univariada dos atributos do solo não foi eficiente na identificação das três superfícies geomórficas. Utilizando-se os atributos físicos e químicos do solo, as técnicas estatísticas multivariada permitiram à separação dos três grupos de corpos naturais do solo que foram equivalentes as três superfícies geomórficas mapeadas. Estes resultados são interessantes, pois demonstram a viabilidade da utilização de classificação numérica das superfícies geomórficas para ajudar no mapeamento de solo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In conformational analysis, the systematic search method completely maps the space but suffers from the combinatorial explosion problem because the number of conformations increases exponentially with the number of free rotation angles. This study introduces a new methodology of conformational analysis that controls the combinatorial explosion. It is based on a dimensional reduction of the system through the use of principal component analysis. The results are exactly the same as those obtained for the complete search but, in this case, the number of conformations increases only quadratically with the number of free rotation angles. The method is applied to a series of three drugs: omeprazole. pantoprazole, lansoprazole-benzimidazoles that suppress gastric-acid secretion by means of H(+), K(+)-ATPase enzyme inhibition. (C) 2002 John Wiley Sons. Inc.
Resumo:
We studied ontogenetic variation in the shape of the skull among species of Caiman using principal component analysis. Comparison of multivariate allometric coefficients and ontogenetic trends between size and shape reveals that C. sclerops and C. yacare have similar ontogenetic processes, and they are more related to each other than either is to C. latirostris. Allometric relationships of the characters measured are similar in all species studied. The greater differences were in the width measurements, with higher coefficients in shape (second principal component) for C. latirostris, and length measurements with higher coefficients in shape for C. yacare and C. sclerops. The ontogenetic process leading to change in skull shape in the group seems to be plesiomorphic for elongation and derived for broadening. Statistical comparison of the ontogenetic trends with models of allometric heterochrony suggests that C. latirostris has diverged from the other species by a neotenic process, and that C. sclerops is separated from C. yacare by ontogenetic scaling (progenesis).
Resumo:
The contents of some nutrients in 35 Brazilian green and roasted coffee samples were determined by flame atomic absorption spectrometry (Ca, Mg, Fe, Cu, Mn, and Zn), flame atomic emission photometry (Na and K) and Kjeldahl (N) after preparing the samples by wet digestion procedures using i) a digester heating block and ii) a conventional microwave oven system with pressure and temperature control. The accuracy of the procedures was checked using three standard reference materials (National Institute of Standards and Technology, SRM 1573a Tomato Leaves, SRM 1547 Peach Leaves, SRM 1570a Trace Elements in Spinach). Analysis of data after application of t-test showed that results obtained by microwave-assisted digestion were more accurate than those obtained by block digester at 95% confidence level. Additionally to better accuracy, other favorable characteristics found were lower analytical blanks, lower reagent consumption, and shorter digestion time. Exploratory analysis of results using Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that Na, K, Ca, Cu, Mg, and Fe were the principal elements to discriminate between green and roasted coffee samples. ©2007 Sociedade Brasileira de Química.
Resumo:
When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The trial and error approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems. © 2011 Elsevier Inc.