24 resultados para Inclusion complexes
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cyclodextrins (CDs) are annular oligosaccharides containing 6-12 glucose unities joined together by alpha-1,4 bonds. They have a conical-truncated shape with a lipophilic cavity in which different molecules can be included resulting in a stable inclusion complex. The cyclodextrins have been widely applied in pharmaceutical technology with the objective of increasing the solubility, stability and bioavailability of drugs in different pharmaceutical dosage forms, such as tablets. In order to obtain beta-CD tablets, liquid dispersions of drug/beta-CD are usually submitted to different drying processes, like spray-drying, freeze-drying or slow evaporation, being this dry material added to a number of excipients. However, such drying processes can generate particulate materials showing problems of flow and compressibility, needing their conversion into granulates by means of wetting with granulation liquid followed by additional drying. In this work, the main objective was to evaluate the preparation of tablets without the need of this additional drying step. For this purpose an aqueous dispersion containing acetaminophen/beta-CD complex and cornstarch was dried using a spouted bed and the obtained granules were compressed in tablets. Acetaminophen was used as model drug due to its low water solubility and the inexpensive and widely available cornstarch was chosen as excipient. Acetaminophen powder was added into a beta-cyclodextrin solution prepared in distilled water at 70 degrees C. Stirring was kept until this dispersion cooled to room temperature. Then cornstarch was added and the resulting dispersion was dried in spouted bed equipment. This material was compressed into tablets using an Erweka Korsh EKO tablet machine. This innovative approach allowed the tablets preparation process to be carried out with fewer steps and represents a technological reliable strategy to produce beta-cyclodextrin inclusion complexes tablets. (C) 2010 Elsevier By. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.
Resumo:
Schistosomiasis is still an endemic disease in many regions, with 250 million people infected with Schistosoma and about 500,000 deaths per year. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment, however it is classified as Class II in the Biopharmaceutics Classification System, as its low solubility hinders its performance in biological systems. The use of cyclodextrins is a useful tool to increase the solubility and bioavailability of drugs. The aim of this work was to prepare an inclusion compound of PZQ and methyl-beta-cyclodextrin (MeCD), perform its physico-chemical characterization, and explore its in vitro cytotoxicity. SEM showed a change of the morphological characteristics of PZQ:MeCD crystals, and IR data supported this finding, with changes after interaction with MeCD including effects on the C-H of the aromatic ring, observed at 758 cm(-1). Differential scanning calorimetry measurements revealed that complexation occurred in a 1:1 molar ratio, as evidenced by the lack of a PZQ transition temperature after inclusion into the MeCD cavity. In solution, the PZQ UV spectrum profile in the presence of MeCD was comparable to the PZQ spectrum in a hydrophobic solvent. Phase solubility diagrams showed that there was a 5.5-fold increase in PZQ solubility, and were indicative of a type A(L) isotherm, that was used to determine an association constant (K(a)) of 140.8 M(-1). No cytotoxicity of the PZQ:MeCD inclusion compound was observed in tests using 3T3 cells. The results suggest that the association of PZQ with MeCD could be a good alternative for the treatment of schistosomiasis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cyclodextrins ( CDs) are cyclic oligasaccharides composed by D- glucose monomers joined by alpha- 1,4-D glicosidic linkages. The main types of CDs are alpha-,beta-and gamma-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase ( CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches ( commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a beta- CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0: 0.89: 0.11 for alpha/beta/gamma. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chagas disease is a serious health problem in Latin America. Hidroxymethylnitrofurazone (NFOH) is a nitrofurazone prodrug more active than nitrofurazone against Trypanosoma cruzi. However, NFOH presents low aqueous solubility, high photodecomposition and high toxicity. The present work is focused on the characterization of an inclusion complex of NFOH in 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD). The complexation with HP-beta-CD was investigated using reversed-phase liquid chromatography, solubility isotherms and nuclear magnetic resonance. The retention behavior was analyzed on a reversed-phase C-18 column, using acetonitrile-water (20/80, v/v) as the mobile phase, in which HP-beta-CD was incorporated as a mobile phase additive. The decrease in the retention times with increasing concentrations of HP-beta-CD enables the determination of the apparent stability constant of the complex (K = 6.2 +/- 0.3 M-1) by HPLC. The solubility isotherm was studied and the value for the apparent stability constant (K = 7.9 +/- 0.2 M-1) was calculated. The application of continuous variation method indicated the presence of a complex with 1:1 NFOH:HP-beta-CD stoichiometry. The photostability study showed that the formation of an inclusion complex had a destabilizing effect on the photodecomposition of NFOH when compared to that of the "free" molecule in solution. The mobility investigation (by NMR longitudinal relaxation time) gives information about the complexation of NFOH with HP-beta-CD. In preliminary toxicity studies, cell viability tests revealed that inclusion complexes were able to decrease the toxic effect (p < 0.01) caused by NFOH. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nitrofurazone (NF), 5-nitro-2-furaldehyde semicarbazone, a broad-spectrum antibiotic, has reported toxic effects and low solubility in water. It would be of great interest to form inclusion complexes between NF and a cyclodextrin, to develop more effective and safer antibiotic formulations. This paper focuses on the preparation of inclusion complexes of NF with 2-hydroxypropyl-β- cyclodextrin (HP-β-CD) and their initial characterization by evaluating rates of complex formation, photostability, solubility isotherms, release rate profiles, stoichiometry of the complexes and their morphology, as revealed by scanning electron microscopy. The kinetic tests of complex formation revealed that 17,3 h is enough for stabilization of the NF-cyclodextrin complex. The solubility isotherm studies showed that the isotherm changes from type A to type B, as a function of temperature. The photostability experiments showed that the insertion of the NF in the HP-β-CD cavity protects the drug from photodecomposition. The release kinetic tests showed that the profile of NF release from the complex is altered by the presence of HP-β-CD in the medium. A Job's plot indicated that the stoichiometry of the complex was 1:1 NF:HP-β-CD. The scanning electron micrographs showed changes in the crystal structure of NF in the complex. This study focused on the physicochemical properties of drug-delivery formulations that could potentially be developed into a novel type of therapy with NF.
Resumo:
Triamcinolone (TRI), a drug widely used in the treatment of ocular inflammatory diseases, is practically insoluble in water, which limits its use in eye drops. Cyclodextrins (CDs) have been used to increase the solubility or dissolution rate of drugs. The purpose of the present study was to validate a UV-Vis spectrophotometric method for quantitative analysis of TRI in inclusion complexes with beta-cyclodextrin (B-CD) associated with triethanolamine (TEA) (ternary complex). The proposed analytical method was validated with respect to the parameters established by the Brazilian regulatory National Agency of Sanitary Monitoring (ANVISA). The analytical measurements of absorbance were made at 242nm, at room temperature, in a 1-cm path-length cuvette. The precision and accuracy studies were performed at five concentration levels (4, 8, 12, 18 and 20μg.mL -1). The B-CD associated with TEA did not provoke any alteration in the photochemical behavior of TRI. The results for the measured analytical parameters showed the success of the method. The standard curve was linear (r2 > 0.999) in the concentration range from 2 to 24 μg.mL -1. The method achieved good precision levels in the inter-day (relative standard deviation-RSD <3.4%) and reproducibility (RSD <3.8%) tests. The accuracy was about 80% and the pH changes introduced in the robustness study did not reveal any relevant interference at any of the studied concentrations. The experimental results demonstrate a simple, rapid and affordable UV-Vis spectrophotometric method that could be applied to the quantitation of TRI in this ternary complex.