24 resultados para Incineration

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of air enrichment in a combustion chamber designed to incinerate aqueous residues is presented. Diesel fuel and liquefied petroleum gas (LPG) were used independently as fuels. An increase of 85% in the incineration capacity was obtained with nearly 50% O-2 in the oxidant gas, in comparison to incineration with air only. The incineration capacity continues increasing for enrichment levels above 50% O-2 , although at a lower pace. For complete oxy-flame combustion (100% O-2 ), the increase of the incineration capacity was about 110% relative to the starting conditions and about 13.5% relative to the condition with 50% O-2 . The CO concentration measured near the flame front decreases drastically with the increase of O-2 content in the oxidant gas. At the chamber exit, the CO concentration was always near zero, indicating that the chamber residence time was sufficient to complete fuel oxidation in any test setting. For diesel fuel, the NOx was entirely formed in the first region of the combustion chamber. For diesel fuel, there was some increase in the NOx concentration up to 35% of O-2 ; this increase became very sharp after that. From 60 ppm, at operation with air only, the NOx concentration raises to 200 ppm at 35% O-2 , and then to 2900 ppm at 74% O-2 . The latter corresponds to six times more NOx in terms of the ratio of mass of NO to mass of residue, compared to the situation of combustion with air only. For LPG, the NOx concentrations reached 4200 ppm at 80% O-2 , corresponding to nine times more, also in terms of the ratio of mass of NO to mass of residue, in comparison with combustion with air only. Results of different techniques used to control the NOx emission during air enrichment are discussed: (a) variation of the recirculated zone intensity, (b) increase of the spray Sauter mean diameter, (c) fuel staging, (d) oxidizer staging, and (e) ammonia injection. The present paper shows that NOx emission may be controlled without damage of the increase of incineration capacity by the enrichment and with low emission of partial oxidation pollutants such as CO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of oxygen to enrich the oxidizer can be an attractive alternate to increase incineration rates of a combustion chamber originally designed to operate with air. For a certain fuel now rate, if some incineration parameters are held constant (as combustion chamber temperature, turbulence level, and residence time), an increase of incineration rates becomes possible with injection of oxygen. This work presents a theoretical evaluation of combustion air enrichment in a combustion chamber designed to incinerate aqueous residues using methane as fuel and air as oxidizer. Detailed chemistry was employed to predict pollutants formation. The overall process was investigated using the PSR routine from the CHEMKIN library. (C) 1999 Elsevier B.V. Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of oxygen to enrich the combustion air can be an attractive technique to increase capacity of an incinerator originally designed to operate with air, If incinerator parameters such as operation temperature, turbulence level and residence time are fixed for a certain fuel supply rate, it is possible to increase the residue consumption rate using enriched air. This paper presents the thermal analysis for operation with enriched air of an aqueous residue experimental incinerator. The auxiliary fuel was diesel oil. The theoretical results showed that there is a considerable increase in the incineration ratio up to approximately 50% of O-2 in the oxidiser. The tendency was confirmed experimentally. Thermal analysis was demonstrated to be an important tool to predict possible incinerator capacity increase. (C) 2005 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy generation is needed in São Paulo and MSW represents a promising alternative, although it is more expensive than hydroelectric power. About 14 900 t/day of MSW is generated, of which 8433 t/day is domestic and commercial MSW. From this amount, 1800 t will be destined to generate 30 MW of power. The eco-balance of CO2 has been considered for incineration and recycling. The recycling program of plastics, metals, paper and glass would represent a significant reduction in energy and CO2 emission. The total CO2 released is 3.34 x 10(5) t/yr without recycling. and is 1.25 x 10(5) t/yr with a recycling program. Most of the CO2 comes from plastics and paper production. Economic aspects could probably favor Incineration with energy production as the best option. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of oxygen to enrich the combustion air can be an attractive technique to increase capacity of an incinerator originally designed to operate with air. If incinerator parameters such as operation temperature, turbulence level and residence time are fixed for a certain fuel supply rate, it is possible to increase the residue consumption rate using enriched air. This paper presents the thermal analysis for operation with enriched air of an aqueous residue experimental incinerator. The auxiliary fuel was diesel oil. The theoretical results showed that there is a considerable increase in the incineration ratio up to approximately 50 % of O 2 in the oxidiser. The tendency was confirmed experimentally. Thermal analysis was demonstrated to be an important tool to predict possible incinerator capacity increase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work analyses the recuperation of the energy of Municipal Solid Waste (MSW) through the incineration process. It considers the up to date tendency of segregation (separation) of plastic, paper and cardboard, glass and metals and their influence in the fluxes of mass and energy in the incineration system of MSW. For its development was used information related to the generation of MSW in Bauru city and the Combust software. The results so obtained allowed the estimation of the Caloric power of the typical MSW and also of this residue when one considers the separations of paper/cardboard and plastic for recycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban centers have a huge demand for electricity and the growing problem of the solid waste management generated by their population, a relevant social and administrative problem. The correct disposal of the municipal solid waste (MSW) generated in cities is one of the most complex engineering problems that involves logistics, safety, environmental and energetic aspects for its adequate management. Due to a national policy of solid wastes recently promulgated, Brazilian cities are evaluating the technical and economic feasibility of incinerating the non-recyclable waste. São José dos Campos, a São Paulo State industrialized city, is considering the composting of organic waste for biogas production and mass incineration of non-recyclable waste. This paper presents a waste-to-energy system based on the integration of gas turbines to a MSW incinerator for producing thermal and electric energy as an alternative solution for the solid waste disposal in São José dos Campos, SP. A technical and economic feasibility study for the hybrid combined cycle plant is presented and revealed to be attractive when carbon credit and waste tax are included in the project income. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FMVZ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)