7 resultados para Imaging sensors
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents the prototype of a low-cost terrestrial mobile mapping system (MMS) composed of a van, two digital video cameras, two GPS receivers, a notebook computer, and a sound frame synchronisation system. The imaging sensors are mounted as a stereo video camera on top of the vehicle together with the GPS antennae. The GPS receivers and the notebook computer are configured to record data referred to the vehicle position at a planned time interval. This position is subsequently transferred to the road images. This set of equipment and methods provide the opportunity to merge distinct techniques to make topographic maps and also to build georeferenced road image databases. Both vector maps and raster image databases, when integrated appropriately, can give spatial researchers and engineers a new technique whose application may realise better planning and analysis related to the road environment. The experimental results proved that the MMS developed at the São Paulo State University is an effective approach to inspecting road pavements, to map road marks and traffic signs, electric power poles, telephone booths, drain pipes, and many other applications important to people's safety and welfare. A small number of wad images have already been captured by the prototype as a consequence of its application in distinct projects. An efficient organisation of those images and the prompt access to them justify the need for building a georeferenced image database. By expanding it, both at the hardware and software levels, it is possible for engineers to analyse the entire road environment on their office computers.
Resumo:
Plant phenology has gained importance in the context of global change research, stimulating the development of new technologies for phenological observation. Digital cameras have been successfully used as multi-channel imaging sensors, providing measures of leaf color change information (RGB channels), or leafing phenological changes in plants. We monitored leaf-changing patterns of a cerrado-savanna vegetation by taken daily digital images. We extract RGB channels from digital images and correlated with phenological changes. Our first goals were: (1) to test if the color change information is able to characterize the phenological pattern of a group of species; and (2) to test if individuals from the same functional group may be automatically identified using digital images. In this paper, we present a machine learning approach to detect phenological patterns in the digital images. Our preliminary results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; and (2) different plant species present a different behavior with respect to the color change information. Based on those results, we suggest that individuals from the same functional group might be identified using digital images, and introduce a new tool to help phenology experts in the species identification and location on-the-ground. ©2012 IEEE.
Resumo:
Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The alternate current biosusceptometry (ACB) is a biomagnetic technique used to study some physiological parameters associated with gastrointestinal (GI) tract. For this purpose it applies an AC magnetic field and measures the response originating from magnetic marks or tracers. This paper presents an equipment based on the ACB which uses anisotropic magnetoresistive (AMR) sensors and an inexpensive electronic support. The ACB-AMR developed consists of a square array of 6x6 sensors arranged in a firstorder gradiometer configuration with one reference sensor. The equipment was applied to capture magnetic images of different phantoms and to acquire gastric contraction activity of healthy rats. The results show a reasonable sensitivity and spatial-temporal resolution, so that it may be applied for imaging of phantoms and signal acquisition of the GI tract of small animals. © 2010 IEEE.