71 resultados para Image processing technique
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.
Resumo:
Jet impingement erosion test rig has been used to erode titanium alloy specimens (Ti-4Al-4V). Eroded surface profiles have been obtained by vertical sectioning method for light microscopy observation. Mixed fractals have been measured from profile images by a digital image processing and analysis technique. The use of this technique allows glimpsing a quantitative correlation among material properties, fractal surface topography and erosion phenomena. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
An automatic image processing and analysis technique has been developed for quantitative characterization of multi-phase materials. For the development of this technique is used the Khoros system that offers the basic morphological tools and a flexible, visual programming language. These techniques are implemented in a highly user oriented image processing environment that allows the user to adapt each step of the processing to his special requirements.To illustrate the implementation and performance of this technique, images of two different materials are processed for microstructure characterization. The result is presented through the determination of volume fraction of the different phases or precipitates.
Resumo:
This work is an example of the improvement on quantitative fractography by means of digital image processing and light microscopy. Two techniques are presented to investigate the quantitative fracture behavior of Ti-4Al-4V heat-treated alloy specimens, under Charpy impact testing. The first technique is the Minkowski method for fractal dimension measurement from surface profiles, revealing the multifractal character of Ti-4Al-4V fracture. It was not observed a clear positive correlation of fractal values against Charpy energies for Ti-4Al-4V alloy specimens, due to their ductility, microstructural heterogeneities and the dynamic loading characteristics at region near the V-notch. The second technique provides an entire elevation map of fracture surface by extracting in-focus regions for each picture from a stack of images acquired at successive focus positions, then computing the surface roughness. Extended-focus reconstruction has been used to explain the behavior along fracture surface. Since these techniques are based on light microscopy, their inherent low cost is very interesting for failure investigations.
Resumo:
Human beings perceive images through their properties, like colour, shape, size, and texture. Texture is a fertile source of information about the physical environment. Images of low density crowds tend to present coarse textures, while images of dense crowds tend to present fine textures. This paper describes a new technique for automatic estimation of crowd density, which is a part of the problem of automatic crowd monitoring, using texture information based on grey-level transition probabilities on digitised images. Crowd density feature vectors are extracted from such images and used by a self organising neural network which is responsible for the crowd density estimation. Results obtained respectively to the estimation of the number of people in a specific area of Liverpool Street Railway Station in London (UK) are presented.
Resumo:
OBJECTIVES: Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics.METHOD: Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed.RESULTS: There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], p<0.01) and of the proximal region between the groups and protocols (two-way ANOVA, p<0.01).CONCLUSIONS: The technique developed in this study is an innovative method for performing a mechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.
Resumo:
This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.
Resumo:
The objective of the present study, developed in a mountainous region in Brazil where many landslides occur, is to present a method for detecting landslide scars that couples image processing techniques with spatial analysis tools. An IKONOS image was initially segmented, and then classified through a Batthacharrya classifier, with an acceptance limit of 99%, resulting in 216 polygons identified with a spectral response similar to landslide scars. After making use of some spatial analysis tools that took into account a susceptibility map, a map of local drainage channels and highways, and the maximum expected size of scars in the study area, some features misinterpreted as scars were excluded. The 43 resulting features were then compared with visually interpreted landslide scars and field observations. The proposed method can be reproduced and enhanced by adding filtering criteria and was able to find new scars on the image, with a final error rate of 2.3%.
Resumo:
A digital image processing and analysis method has been developed to classify shape and evaluate size and morphology parameters of corrosion pits. This method seems to be effective to analyze surfaces with low or high degree of pitting formation. Theoretical geometry data have been compared against experimental data obtained for titanium and aluminum alloys subjected to different corrosion tests. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The outdating of cartographic products affects planning. It is important to propose methods to help detect changes in surface. Thus, the combined use of remote sensing image and techniques of digital image processing has contributed significantly to minimize such outdating. Mathematical morphology is an image processing technique which describes quantitatively geometric structures presented in the image and provides tools such as edge detectors and morphological filters. Previous studies have shown that the technique has potential on the detection of significant features. Thus, this paper proposes a routine of morphological operators to detect a road network. The test area corresponds to an excerpt Quickbird image and has as a feature of interest an avenue of the city of Presidente Prudente, SP. In the processing, the main morphological operators used were threshad, areaopen, binary and erosion. To estimate the accuracy with which the linear features were detected, it was done the analysis of linear correlation between vectors of the features detected and the corresponding topographical map of the region. The results showed that the mathematical morphology can be used in cartography, aiming to use them in conventional cartographic updating processes.
Resumo:
The Ag-NOR staining technique and image analysis were used to evaluate morphological parameters (area, perimeter and axis ratio) in nucleoli from normal thyroids and from thyroids bearing proliferating lesions (carcinomas, adenomas and hyperplasias). Regions with normal appearance located close to adenomatous and carcinomatous regions, in the thyroid of every patient, were also analyzed for comparison with the respective pathological regions and with normal thyroids. Statistical analysis of data for the nucleolar area and perimeter allowed the separation of adenomas and carcinomas from hyperplasias and normal tissue but not the two components in each of these two groups. However, if we look at the numbers, a sequence of increasing nucleolar mean areas in the order: normal, hyperplasia, adenoma and carcinoma may be observed, indicating the sequence of increasing rRNA requirements in these different kinds of cells. The axis ratio that denotes the nucleolar shape (round or oblong) did not show significant differences among tissues, suggesting that shape is not important in the characterization of these pathologies. Differences in nucleolar areas and perimeter between normal and affected regions from each patient were statistically significant for adenomas and carcinomas. When these normal regions were compared with the normal thyroids, significant differences were not obtained in the three evaluated parameters. The observations and their importance for histopathological diagnosis are discussed.
Resumo:
In this work an image pre-processing module has been developed to extract quantitative information from plantation images with various degrees of infestation. Four filters comprise this module: the first one acts on smoothness of the image, the second one removes image background enhancing plants leaves, the third filter removes isolated dots not removed by the previous filter, and the fourth one is used to highlight leaves' edges. At first the filters were tested with MATLAB, for a quick visual feedback of the filters' behavior. Then the filters were implemented in the C programming language. At last, the module as been coded in VHDL for the implementation on a Stratix II family FPGA. Tests were run and the results are shown in this paper. © 2008 Springer-Verlag Berlin Heidelberg.