8 resultados para Hydrological model
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
With the accelerated urbanization process of Brazil from the 50s, there was a disorderly occupation of spaces and consequent soil sealing. Unlike this growth, the support capacity of urban environments has not evolved in the same way, generating negative environmental impacts to the citizens. Among these impacts are the effects of flooding. In order to minimize the negative effects of extreme precipitation over cities, the government invests in corrective measures, like compensatory techniques on urban drainage, which have as a basic principle the retention and infiltration of the rainfall, dampening the peak flow and runoff. An example of applying these techniques in urban areas are the detention basins, commonly called large pools. The hydraulic design of these structures is dependent of complex data and variables, and projects involving small areas generally use simplified methods for defining the reservoirs volume of the storage (Tassi, 2005). One of these methods is presented in this study, which relates to the percentage of soil sealing to the specific storage volume (m³/ha) in combination by applying the hydrological model of the Rational Method and analyzing regional rainfall and soil occupation over the basin. Within this context, the basin of the Wenzel stream, which is located amidst the urban area of Rio Claro/SP, also presents the problems related to human occupation in its valley. Thus, by the method presented has been adjusted a curve correlating the percentage of impermeable area and the specific volume of a detention basin. For the current situation of Wenzel Basin with 82% of impermeable area, and return period of 10 years, the specific volume is 262.1 m³/ha. The presented method is consistent with the results of other studies in the area, and the expression obtained allows estimating the volume of storage required to match hydrograph pre and post-occupancy. It presents itself as a useful tool in the planning stage of...
Resumo:
The objective of this work was to evaluate the sediment production in the initial part of the Pardo River Basin - Botucatu/SP from 1994 to 1999, using the mathematical hydrological model SWAT. It was used topographic maps and satellite data manipulated in GIS using the software SPRING 5.1.6. The simulation of sediment production was generated with the aid of an interface between the hydrological model SWAT 2009 with ArcView ®, version 9.3. The maps of Soil, Land Use and Digital Elevation Model (DEM) were generated in the GIS-SPRING 5.1.6 and exported to ArcSWAT 2009. The tabular data related to the parameters of soil and meteorological parameters were entered directly to the SWAT. The model allowed to estimate the sediment production. A sediment average production rate of 33.866 ton ha-1 over the six years of study was computed in the point of discharge of the basin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper proposes a combined pool/bilateral short term hydrothermal scheduling model (PDC) for the context of the day-ahead energy markets. Some innovative aspects are introduced in the model, such as: i) the hydraulic generation is optimized through the opportunity cost function proposed; ii) there is no decoupling between physical and commercial dispatches, as is the case today in Brazil; iii) interrelationships between pool and bilateral markets are represented through a single optimization problem; iv) risk exposures related to future deficits are intrinsically mitigated; v) the model calculates spot prices in an hourly basis and the results show a coherent correlation between hydrological conditions and calculated prices. The proposed PDC model is solved by a primal-dual interior point method and is evaluated by simulations involving a test system. The results are focused on sensitivity analyses involving the parameters of the model, in such a way to emphasize its main modeling aspects. The results show that the proposed PDC provides a conceptual means for short term price formation for hydrothermal systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This model connects directly the radar reflectivity data and hydrological variable runoff. The catchment is discretized in pixels (4 Km × 4 Km) with the same resolution of the CAPPI. Careful discretization is made so that every grid catchment pixel corresponds precisely to CAPPI grid cell. The basin is assumed a linear system and also time invariant. The forecast technique takes advantage of spatial and temporal resolutions obtained by the radar. The method uses only the measurements of the factor reflectivity distribution observed over the catchment area without using the reflectivity - rainfall rate transformation by the conventional Z-R relationships. The reflectivity values in each catchment pixel are translated to a gauging station by using a transfer function. This transfer function represents the travel time of the superficial water flowing through pixels in the drainage direction ending at the gauging station. The parameters used to compute the transfer function are concentration time and the physiographic catchment characteristics. -from Authors
Resumo:
In different regions of Brazil, population growth and economic development can degrade water quality, compromising watershed health and human supply. Because of its ability to combine spatial and temporal data in the same environment and to create water resources management (WRM) models, the Geographical Information System (GIS) is a powerful tool for managing water resources, preventing floods and estimating water supply. This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of the Paraíba do Sul Basin (Sao Paulo State portion), situated in the Southeast of Brazil. The case study presented in this paper has a database suitable for the basin's dimensions, including digitized topographic maps at a 50,000 scale. From an ArcGIS®/ArcHydro Framework Data Model, a geometric network was created to produce different raster products. This first grid derived from the digital elevation model grid (DEM) is the flow direction map followed by flow accumulation, stream and catchment maps. The next steps in this research are to include the different multipurpose reservoirs situated along the Paraíba do Sul River and to incorporate rainfall time series data in ArcHydro to build a hydrologic data model within a GIS environment in order to produce a comprehensive spatial-temporal model.