12 resultados para Human anatomy
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
There is little scholarly research on the history, teaching and research of human anatomy in Brazil. A broader vision of the progress of anatomy under different circumstances in the country is virtually non-existent, leaving researchers keen to study the subject insecure. This is compounded by the fact that the data available are not always reliable. This text retraces the development of the discipline of anatomy and its research and education in Brazil in general and São Paulo state in particular, which can largely be reduced to the action of the self-proclaimed Boverian school of anatomy, founded by Italian physician Alfonso Bovero at the same time as the Medical Faculty of the University of São Paulo.
Resumo:
This monograph seeks to provide an exposition and theoretical examination of Ciência da Carne (“Science of the Flesh”), a series of artworks in woodcut printing executed after research into the artistic aspects of Human Anatomy, done throughout the Graduate Course in Visual Arts at UNESP’s Art Institute. Traditional procedures of naturalistic representation of the human figure often adopt the scientific basis of Anatomy as a means of interpreting the surface contours of the body from its inside out. The historical connection between Anatomy and Art, however, is not merely accidental, for it is integral to the development of both disciplines, which find themselves deeply related in the human impulse for self-discovery and reinvention of its own likeness. The series of artworks collected in Ciência da Carne explores, through the particular graphical language provided by woodcut printing, abstract arrangements of isolated anatomical elements, at once removed from the context of traditional figurative representation and from the didactic goals of medical illustration.
Resumo:
The teaching of hearing physiology requires an knowledge integration of Human Anatomy, Biophysics, more precisely Bioacoustics and Bioelectrogenesis, as well as Neurophysiology. Students present difficulty to build knowledge about functional mechanisms of sound conduction and sensory transduction, especially if the elements are not visible forms, as the middle and inner ear structures. To make the teaching about hearing physiology and sensory perception easier, was produced a set of didactical materials about the subject. At first, a resin model that faithfully describes the anatomical relationship of the ossicles with the tympanic membrane was developed. Subsequently, a second model that, besides illustrates the mechanism of acoustic impedance overcoming, also reveals how acoustic sensorial transduction occurs in inner ear, was designed and produced. In the third didactical model, are visualized, through students interaction, areas of the cerebral cortex that interpret the different sensory modalities. In addition, were created three educational videos about hearing problems and a site on Human Hearing Physiology, available on Institute of Biosciences website. The results of this course conclusion monograph are presented in the form of articles that were submitted to Journal Physics in the School and the Journal of the Nucleus of Teaching
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Differently graded areas of human prostate adenocarcinoma were examined after Masson's trichrome staining or immunohistochemistry for smooth muscle alpha-actin, type IV collagen and laminin. In addition, the ultrastructure of the prostatic smooth muscle cells (SMC) during glandular proliferation and epithelial invasion in selected tumors was studied. The SMC formed a thick layer below the epithelial structures in unaffected areas and were closely associated with each other in homotypic interactions. As the tumor grade increased, the SMC gradually lost interactions with each other and became atrophic. With the growth of the epithelial compartment, the SMC initially segregated to the tumor periphery and the intercellular spaces increased. In high grade tumors, the epithelial cancer cells invaded the spaces between the SMC. Immunohistochemical analysis of the basal membrane revealed increased disruption of the usually thick basal membrane, which became thinner and faintly stained with each of the antibodies used. We conclude that most SMC become atrophic following epithelial invasion in human tumors and that degradation of the basal membrane is an important factor in this process. At the ultrastructural level, different SMC phenotypes occur in prostatic tissues during epithelial invasion. Interconversion between these phenotypes is suggested and a probable relationship among them is proposed.
Resumo:
Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.
Resumo:
Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two million expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define approximate to23,500 genes, of which only approximate to1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes reveals that <1% do not have corresponding ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body. More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants (although the one-pass nature of the data necessitates careful validation) and many alternatively spliced transcripts. Although widely exploited by the scientific community, vindicating our totally open source policy, the EST data generated still provide extensive information that remains to be systematically explored, and that may further facilitate progress toward both the understanding and treatment of human cancers.
Resumo:
The purpose of this study was to show anatomical variations in permanent maxillary molars. Two clinical cases of four-rooted maxillary molars and a macroscopic study of an extracted tooth, showing a five-rooted maxillary molar, are presented.
Resumo:
Introduction: The retroarticular process is a bony prominence formed by the thickening of the lateral border of the mandibular fossa, forming the posterior wall of the temporomandibular joint. Since little is known and discussed about the retroarticular process, our aim was to study its presence, shape and size, relating these findings to the shape of the skulls according to the horizontal cephalic index. Materials and Methods: We used 400 dry human skulls of the Institute of Science and Technology - UNESP Anatomy Laboratory. Each skull was classified in brachycranics, mesocranics or dolichocranics, and then positioned on a craneostat to measure the height of the retroarticular process from its lower extremity to the auriculo-orbital plane. The width was obtained by measuring the base of the process on its longer lateral axis. Results: The retroarticular process was found bilaterally in 397 skulls (99.25%). All the processes were classified into the following shapes: pyramidal (35.55%), tubercular (31.78%), mammilar (20.73%), crest-like (9.05%) and molar shape (2.89%); 254 skulls (63.50%) showed the same type of process at the right and left sides (Kappa=0.496, moderate agreement). The average height and width were 5.28 mm and 12.81 mm, respectively. Conclusion: The retroarticular process was found in almost all the skulls examined. There are no significant evidences about the relationship among the presence, shape and size of the retroarticular process and the shape of the skulls according to the horizontal cephalic index. However, our findings led us to infer that there would be a functional relationship between the process and the temporomandibular joint.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of the Dental Sculpture and Anatomy discipline is to introduce undergraduate students to the study of the anatomic and morphological characteristics of permanent and primary human dentition, through classes, books and cognitive and psychomotor activities. This discipline supports the teaching of specific knowledge necessary for a more extensive education, involving interdisciplinarity as a means of knowledge exchange among several areas of dentistry, to achieve comprehensive professional education. Students must recognize the dental morphology from samples of preserved teeth, and reproduce the morphology through three-dimensional models made of stone or wax blocks. In this article, the authors describe the process for producing teeth collars and macro dental models made of stone, their importance and benefits of utilization. The purpose of the study was to encourage the teaching of Dental Sculpture and Anatomy toundergraduate students of the Bauru School of Dentistry, University of Sao Paulo, through activities that would associate theory, practice and the development of manual skills.