8 resultados para Hot metal carriers
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The growing demand for steels with tighter compositional specifications led the Companhia Siderúrgica Nacional (CSN) to develop more efficient processes. To solve this problem this paper aims to identify the operational variables more impacting in the desulfurization process, specifically in torpedo car, as well as its causes and solutions. Then select and test, with laboratorial and industrial tests, desulfurizing agents based of CaC 2, CaO, CaCO3, and Mg to assess the cost per quantity of product desulfurized. The mixture with best results was not that one with highest content of CaC2. It is believed that this mixture showed better efficiency because of the increased agitation of the bath, produced by the releasing of gas from compound CaCO3 present in this mixture. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We consider a charged Brownian gas under the influence of external, static and uniform electric and magnetic fields, immersed in a uniform bath temperature. We obtain the solution for the associated Langevin equation, and thereafter the evolution of the nonequilibrium temperature towards a nonequilibrium (hot) steady state. We apply our results to a simple yet relevant Brownian model for carrier transport in GaAs. We obtain a negative differential conductivity regime (Gunn effect) and discuss and compare our results with the experimental results. © 2013.
Resumo:
Blast furnace gas yield is essentially controlled by a gas-solid reaction phenomenon, which strongly influences hot metal manufacturing costs. As a result of rising prices for reducing agents on the international market, Companhia Siderurgica Nacional decided to inject natural gas into its blast furnaces. With more gas inside the furnace, the burden permeability became even more critical. To improve blast furnace gas yield, a new technological approach was adopted; raising the metallic burden reaction surface. To that end, a special sinter was developed with permeability being controlled by adding micropore nucleus forming agents, cellulignin coal, without, however, degrading its mechanical properties. This paper shows the main process parameters and the results from physicochemical characterisation of a sinter with controlled permeability, on a pilot scale, compared to those of conventional sinter. Gas flow laboratory simulations have conclusively corroborated the positive effects of micropore nucleus forming agents on enhancing sinter permeability.
Resumo:
This paper investigates corrosion behavior in graphite refractory hot metal impregnated with ZrO 2 and CeO 2 carrying solutions used in Blast Furnace hearth, consisting of 50% graphite and 50% anthracite. Corrosions tests were carried out by means of finger test method in an induction furnace, using bar-shaped 30×30×280 mm test specimens and hot metal from CSN#2 Blast Furnace runner. The temperature chosen for this test was 1520°C and sixty-minute isotherm. Upon test completion, test specimens were characterized by their dimensional variation, X-ray diffractometry and Scanning Electronic Microscopy (SEM).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MOx WOx and VOx. The method employs the controlled oxidation of a filament of a transition metal heated to 1000 degrees C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min(-1) for MoOx, are obtained. The film stoichiometry depends on the exact deposition conditions. MoOx films, for example, present a mixture of MoO2 and MoO3 phases, as revealed by XPS. As determined by Li+ intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm(2) C-1 at a wavelength of 700 nm. MOx and WOx films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VOx films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)