35 resultados para Hochschild Cohomology
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In a previous Letter. The BRST cohomology in the pure spinor formalism of the superstring was shown to coincide with the light-cone Green-Schwarz spectrum by using an SO(8) parameterization of the pure spinor. In this Letter, the SO(9, 1) Lorentz generators are explicitly constructed using this SO(8) parameterization, proving the Lorentz invariance of the pure spinor BRST cohomology. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to alpha'(3). Some partial results on N = 2, d = 10 and N = 1, d = 11 are also given.
Resumo:
Closed string physical states are BRST cohomology classes computed on the space of states annihilated by b- 0. Since b- 0 does not commute with the operations of picture changing, BRST cohomologies at different pictures need not agree. We show explicitly that Ramond-Ramond (RR) zero-momentum physical states are inequivalent at different pictures, and prove that non-zero-momentum physical states are equivalent in all pictures. We find that D-brane states represent BRST classes that are non-polynomial on the superghost zero-modes, while RR gauge fields appear as polynomial BRST classes. We also prove that in x-cohomology, the cohomology where the zero-mode of the spatial coordinates is included, there is a unique ghost-number one BRST class responsible for the Green-Schwarz anomaly, and a unique ghost number minus one BRST class associated with RR charge. © 1998 Elsevier Science B.V.
Resumo:
A manifestly super-Poincaré covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables.
Resumo:
A relation is found between nonlocal conserved charges in string theory and certain ghost-number two states in the BRST cohomology. This provides a simple proof that the nonlocal conserved charges for the superstring in an AdS 5 × S5 background are BRST-invariant in the pure spinor formalism and are κ-symmetric in the Green-Schwarz formalism. © SISSA/ISAS 2005.
Resumo:
In the study of the Type II superstring, it is useful to consider the BRST complex associated to the sum of two pure spinors. The cohomology of this complex is an infinite-dimensional vector space. It is also a finite-dimensional algebra over the algebra of functions of a single pure spinor. In this paper we study the multiplicative structure. © 2013 World Scientific Publishing Company.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
We show that the BRST cohomology of the massless sector of the Type IIB superstring on AdS(5) x S (5) can be described as the relative cohomology of an infinite-dimensional Lie superalgebra. We explain how the vertex operators of ghost number 1, which correspond to conserved currents, are described in this language. We also give some algebraic description of the ghost number 2 vertices, which appears to be new. We use this algebraic description to clarify the structure of the zero mode sector of the ghost number two states in flat space, and initiate the study of the vertices of the higher ghost number.
Resumo:
In this work we present some considerations about cohomology of finite groups. In the first part we use the restriction map in cohomology to obtain some results about subgroups of finite index in a group. In the second part, we use Tate cohomology to present an application of the theory of groups with periodic cohomology in topology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The character of holomorphic functions on the space of pure spinors in 10, 11 and 12 dimensions is calculated. From this character formula, we derive in a manifestly covariant way various central charges which appear in the pure spinor formalism for the superstring. We also derive in a simple way the zero momentum cohomology of the pure spinor BRST operator for the D = 10 and D = 11 superparticle.
Resumo:
We investigate the charges and fluxes that can occur in higher-order Abelian gauge theories defined on compact space-time manifolds with boundary. The boundary is necessary to supply a destination to the electric lines of force emanating from brane sources, thus allowing non-zero net electric charges, but it also introduces new types of electric and magnetic flux. The resulting structure of currents, charges, and fluxes is studied and expressed in the language of relative homology and de Rham cohomology and the corresponding abelian groups. These can be organised in terms of a pair of exact sequences related by the Poincare-Lefschetz isomorphism and by a weaker flip symmetry exchanging the ends of the sequences. It is shown how all this structure is brought into play by the imposition of the appropriately generalised Maxwell's equations. The requirement that these equations be integrable restricts the world-volume of a permitted brane (assumed closed) to be homologous to a cycle on the boundary of space-time. All electric charges and magnetic fluxes are quantised and satisfy the Dirac quantisation condition. But through some boundary cycles there may be unquantised electric fluxes associated with quantised magnetic fluxes and so dyonic in nature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
By replacing ten-dimensional pure spinors with eleven-dimensional pure spinors, the formalism recently developed for covariantly quantizing the d = 10 superparticle and superstring is extended to the d = 11 superparticle and supermembrane. In this formalism, kappa symmetry is replaced by a BRST-like invariance using the nilpotent operator Q = ∮ λ αdα where dα is the worldvolume variable corresponding to the d = 11 spacetime supersymmetric derivative and λα is an SO(10, 1) pure spinor variable satisfying λΓcλ = 0 for c = 1 to 11. Super-Poincaré covariant unintegrated and integrated supermembrane vertex operators are explicitly constructed which are in the cohomology of Q. After double-dimensional reduction of the eleventh dimension, these vertex operators are related to type-IIA superstring vertex operators where Q = QL + QR is the sum of the left and right-moving type-IIA BRST operators and the eleventh component of the pure spinor constraint, λΓ 11λ = 0, replaces the bL 0 - b R 0 constraint of the closed superstring. A conjecture is made for the computation of M-theory scattering amplitudes using these supermembrane vertex operators. © SISSA/ISAS 2002.