31 resultados para High impedance

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A constant-current stimulator for high-impedance loads using only low-cost standard high-voltage components Is presented. A voltage-regulator powers an oscillator built across the primary of a step-up transformer whose secondary supplies, after rectification, the high voltage to a switched current-mirror in the driving stage. Adjusting the regulated voltage controls the pulsed-current intensity. A prototype produces stimulus of amplitude and pulsewidth within 0 less than or equal to I-skin less than or equal to 20 mA and 50 mus less than or equal to T-pulse less than or equal to 1 ms, respectively. Pulse-repetition spans from 1 Hz to 10 Hz. Worst case ripple is 3.7% at I-skin = 1 mA. Overall consumption is 5.6 W at I-skin = 20 mA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple constant-current electrocutaneous stimulator for high-impedance loads using low-cost, standard high-voltage components is presented. A voltage-regulator powers an oscillator built across the primary of a transformer whose secondary delivers, after rectification, the high-voltage supply to switched current-mirrors in the driving stage. Since the compliance high-voltage is proportional to the stimulation current, overall power consumption is minimized. By adjusting the regulated voltage, control of the pulsed-current amplitude is achieved. A prototype with readily available components features stimulation currents of amplitude and pulsewidth in the range 0≤Iskin≤20mA and 50μs ≤Tpulse≤1ms, respectively. Pulse-repetition spans from 1 Hz to 10Hz. Worst-case ripple is 3.7% @Iskin=1mA. Measured pulse fall-time is shorter than 32μs. Overall consumption is 4.4W @Iskin=20mA. Subject isolation from line is 4KV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intent of this paper is to present contributions focused on the analysis and development of harmonic attenuator devices. Among these, highlights here the so-called electromagnetic zero-sequence suppressor. This arrangement consists of a filter and a blocker, both electromagnetic, whose combined operation provides paths for low and high impedance, respectively, which can be conveniently adjusted to the desired performance. In this context, here are present results related to experimental studies that show the behavior of the equipment in front of different operating conditions. The tests were performed on a low-power prototype (1kVA/220V) and the analysis results show the main motivator aspects for the use of these devices. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The corrosion resistance of three of the constituent phases in high copper dental amalgams has been investigated by electrochemical methods in 0.9% NaCl solution. Polarization curves show corrosion potentials most positive for gamma(1)-Ag2Hg3, followed by Ag-Cu, and gamma-Ag3Sn in agreement with the order of corrosion resistance deduced from the corrosion currents. Complex plane impedance plots at the open circuit potential showed distorted semicircles with diffusional components at low frequency for Ag-Hg and Ag-Cu, while for gamma-Ag3Sn a layer of corrosion products is formed, partially or completely covering the surface of the electrode. Impedance and noise spectra have been compared in the frequency domain, and show good agreement. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The versatility of sensor arrays made from nanostructured Langmuir-Blodgett (LB) and layer-by-layer (LBL) films is demonstrated in two ways. First, different combinations of sensing units are employed to distinguish the basic tastes, viz. sweet, sour, bitter, and salty tastes, produced, respectively, by small concentrations (down to 0.01 g/mol) of sucrose, HCl, quinine, and NaCl solutions. The sensing units are comprised of LB and/or LBL films from semiconducting polymers, a ruthenium complex, and sulfonated lignin. Then, sensor arrays were used to identify wines from different sources, with the high distinguishing ability being demonstrated in principal component analysis (PCA) plots. Particularly important was the fact that the sensing ability does not depend on specific interactions between analytes and the film materials, but a judicious choice of materials is, nevertheless, required for the materials to respond differently to a given sample. It is also shown that the interaction with the analyte may affect the morphology of the nanostructured films, as indicated with scanning electron microscopy. For instance, in wine analysis these changes are not irreversible and the original film morphology is retrieved if the sensing unit is washed with copious amounts of water, thus allowing the sensor unit to be reused.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capacitance spectra of thin (< 200 nm) Alq(3) electron-only devices have been measured as a function of bias voltage. Capacitance spectra exhibit a flat response at high frequencies (> 10(3) Hz) and no feature related to the carrier transit time is observed. Toward low frequencies the spectra reach a maximum and develop a negative excess capacitance. Capacitance response along with current-voltage (J-V) characteristics are interpreted in terms of the injection of electrons mediated by surface states at the metal organic interface. A detailed model for the impedance of the injection process is provided that highlights the role of the filling/releasing kinetics of energetically distributed interface states. This approach connects the whole capacitance spectra to the occupancy of interface states, with no additional information about bulk trap levels. Simulations based on the model allow to derive the density of interface states effectively intervening in the carrier injection (similar to 1.5 x 10(12) cm (2)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polycrystalline sample of Nd3/2Bi3/2Fe5O12 was prepared by a high- temperature solid-state reaction technique. Preliminary X-ray structural analysis exhibits the formation of a single-phase tetragonal structure at room temperature. Microstructural analysis by scanning electron microscopy shows that the sintered sample has well defined grains. These grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric response at various frequencies and temperatures exhibit a dielectric anomaly at 400 A degrees C. The electrical properties (impedance, modulus and conductivity) of the material were studied using a complex impedance spectroscopy technique. These studies reveal a significant contribution of grain and grain boundary effects in the material. The frequency dependent plots of modulus and the impedance loss show that the conductivity relaxation is of non-Debye type. Studies of electrical conductivity with temperature demonstrate that the compound exhibits Arrhenius-type of electrical conductivity. Study of ac conductivity with frequency suggests that the material obeys Jonscher's universal power law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline La3/2Bi3/2Fe5O12 (LBIO) compound was prepared by a high-temperature solid-state reaction technique. The complex impedance of LBIO was measured over a wide temperature (i.e., room temperature to 500 C) and frequencies (i.e., 10(2)-10(6) Hz) ranges. This study takes advantage of plotting ac data simultaneously in the form of impedance and modulus spectroscopic plots and obey non-Debye type of relaxation process. The Nyquist's plot showed the presence of grain effects in the material at high temperature. The ac conductivity spectrum was found to obey Jonscher's universal power law. The dc conductivity was found to increase with rise in temperature. The activation energy of the compound was found to be 0.24 and 0.51 eV in the low and high-temperature region, respectively, for conduction process.