80 resultados para Hamster Ovary Cells

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lycopene is a natural pigment synthesized by plants and microorganisms, and it is mainly found in tomatoes. It is an acyclic isomer of P-carotene and one of the most potent antioxidants. Several studies have demonstrated the ability of lycopene to prevent chemically induced DNA damage; however, the mechanisms involved are still not clear. In the present study, we investigated the antigenotoxic/antimutagenic effects of lycopene in Chinese Hamster Ovary Cells (CHO) treated with hydrogen peroxide, methylmethanesulphonate (MMS), or 4-nitroquinoline-1-oxide (4-NQO). Lycopene (97%), at final concentrations of 10, 25, and 50 M, was tested under three different protocols: before, simultaneously, and after the treatment with the mutagens. Comet and cytokinesis-block micronucleus assays were used to evaluate the level of DNA damage. Data showed that lycopene reduced the frequency of micronucleated cells induced by the three mutagens. However, this chemopreventive activity was dependent on the concentrations and treatment schedules used. Similar results were observed in the comet assay, although some enhancements of primary DNA damage were detected when the carotenoid was administered after the mutagens. In conclusion, our findings confirmed the chemopreventive activity of lycopene, and showed that this effect occurs under different mechanisms. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluoride has been widely used in dentistry because it is a specific and effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury to genetic material. Genotoxicity tests represent an important part of cancer research to assess the risk of potential carcinogens. In the current study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel (comet) assay in vitro. Chinese hamster ovary cells were exposed to sodium fluoride (NaF) at final concentration ranging from 7 to 100 micro/ml for 3 h, at 37 dgrees C. The results pointed out that NaF in all concentrations tested did not contribute to DNA damage as depicted by the mean tail moment and tail intensity. These findings are clinically important since they represent an important contribution to a correct evaluation of the potential health risk associated with the exposure to dental agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass ionomer cements are widely used in dentistry as restorative materials and adhesives for composite restorations. However, the results of genotoxicity studies using these materials are inconclusive in literature. The goal of this study was to examine the genotoxic and cytotoxic potential of three different glass ionomer cements available commercially (Ketac Cem, Ketac Molar and Vitrebond) by the single cell gel (comet) assay and trypan blue exclusion test, respectively. For this, such materials were exposed to Chinese hamster ovary (CHO) cells in vitro for 1 h at 37 degrees C. Data were assessed by Kruskall-Wallis nonparametric test. The results showed that the powder from Ketac Molar displayed genotoxicity only in the maximum concentration evaluated (100 mu g/mL). In the same way, the liquid from Vitrebond at 0.1% dilution caused an increase of DNA injury. Significant differences (P < 0.05) in cytotoxicity provoked by all powders tested of glass ionomer cements were observed for exposure at 1000 mu g/mL concentration. With respect to liquids of glass ionomer cements evaluated, the major toxic effect on cell viability was produced at 10%, beginning at the dilution of 0.5% for Vitrebond. Taken together, we conclude that some components of glass ionomer cements show both genotoxic and cytotoxic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. In the current study, the potential DNA damage associated with exposure to a number of antimicrobial endodontic compounds was assessed by the single cell gel (comet) assay in vitro.Study design. Chinese hamster ovary (CHO) cells were exposed to formocresol, paramonochlorophenol, calcium hydroxide, or chlorhexidine at final concentration ranging from 0.01% to 1%.Results. Formocresol, paramonochlorophenol, and calcium hydroxide, as well as chlorhexidine in all concentrations tested did not contribute to the DNA damage.Conclusion. These findings are clinically relevant since they represent an important contribution to the correct evaluation of the potential health risk associated with exposure to dental agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Recently, mineral trioxide aggregate (MTA) and Portland cement have been used in dentistry as root-end-filling materials. However, the reported results concerning the biocompatibility of these materials are inconsistent. The goal of this study was to examine the genotoxicity and cytotoxicity of MTA and Portland cements in vitro by the single-cell gel (comet) assay and trypan blue exclusion test.Study design. Chinese hamster ovary (CHO) cells were exposed to MTA and regular and white Portland cements at final concentration ranging from 1 to 1000 mu g/mL for 1 h at 37 degrees C.Results. All compounds tested did not show genotoxic effects in all concentrations evaluated. No significant differences (P > .05) in cytotoxicity were observed for all compounds tested.Conclusions. Taken together, our results suggest that MTA and Portland cements are not genotoxins and are not able to induce cellular death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The root bark of Brosimum gaudichaudii Trecul (Moraceae) is popularly used for treatment of vitiligo. In the present study the mutagenic activity of the aqueous and methanolic extract as well as of the n-butanolic fraction of this medicinal plant were evaluated using Salmonella typhimurium assays, TA100, TA98, TA102 and TA97a strains, while the clastogenic effect in Chinese hamster ovary (CHO) cells in the G(1)/S, S and G(2)/S phases of the cell cycle. The results showed mutagenic activity of the aqueous extract against TA102 in the presence of S9, and of methanolic extract, with and without metabolic activation. TA100 mutagenicity was only observed for the methanolic extract in the absence of S9. The n-butanolic fraction did not present mutagenic activity. In CHO cells only the methanolic extract induced a significant increase of chromosomal aberrations in the G(1)/S and S phases, whereas a decrease in the mitotic index was observed in the G(1)/S and G(2)/S phases. No clastogenicity was observed for the aqueous extract. The furocoumarins (psoralen and bergapten) presented in the extracts might contribute to the mutagenicity. The lower activity of the aqueous extract was probably due to the presence of smaller amount of furocoumarins compared to the methanolic extract. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo mostra, por meio de microscopia convencional, impregnação por nitrato de prata e microscopia eletrônica de transmissão, as mudanças que ocorrem na atividade nuclear de células do ovário durante a vitelogênese de Apis mellifera (Linnaeus, 1758). Material impregnado por nitrato de prata foi detectado no núcleo de células nutridoras, na vesícula germinal do ovócito e no núcleo das células foliculares. As maiores quantidades de material impregnado pela prata foram observadas durante as fases de maior atividade dessas estruturas. A impregnação por prata permitiu demonstrar que a vesícula germinal sintetiza ribonucleoproteínas (RNP) durante o início da vitelogênese. A ultraestrutura mostrou que o material impregnado apresenta características morfológicas de nucléolos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Agaricus blazei Murill (ABM) mushroom, known as the sun mushroom, is native to Brazil and has become known for its medicinal properties. This study examined the anticlastogenic effect of Agaricus blazei in Chinese hamster ovary cells, CHO-k1, by means of a chromosome aberration test using methyl methanesulphonate (MMS, 10(-4)M) as the DNA damage inducing agent. Two mushroom lines were used, ABM 99/26 and ABM 97/11, and the latter was used in the young (Y) and sporulating (S) developmental phases. The cells were treated for 12 h with MMS alone or combined with aqueous extracts of A. blazei at a final concentration of 0.15%, which were prepared at three different temperatures: (a) hot (60 degreesC), (b) room temperature (25 degreesC) and (c) chilled (4 degreesC). Mushroom extracts showed a marked anticlastogenic effect against DNA damage, as evidenced by a decrease in the number of cells with breaks, regardless of the line used, or the developmental stage or the temperature at which the extract was prepared. Generally, the extracts were more effective in reducing the isochromatid type breaks. The data obtained suggest that extracts of A. blazei mushroom are anticlastogenic under the conditions tested, mainly during the G1 and S stages of the cell cycle, where chromosome breaks of the isochromatid type are produced by the MMS agent. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the ability of fluoride to modulate the genotoxic effects induced by the oxidative agent hydrogen peroxide (H2O2) and the alkylating agent methyl methanesulfonate (MMS) in vitro by the single-cell gel ( comet) assay. Chinese hamster ovary cells were exposed in culture for 1 h at 37 degrees C to sodium fluoride at 7-100 mu g/ml. NaF-treated and control cells were then incubated with 0-10 mu M MMS in phosphate-buffered saline (PBS) for 15 min at 37 degrees C, or 7-100 mu M H2O2 in distilled water for 5 min on ice. Negative control cells were treated with PBS for 1 h at 37 degrees C. Clear concentration-related effects were observed for the two genotoxins. Increase of DNA damage induced by either MMS or H2O2 was not significantly altered by pretreatment with NaF. The data indicate that NaF does not modulate alkylation-induced genotoxicity or oxidative DNA damage as measured by the single-cell gel ( comet) assay. Copyright (c) 2007 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aqueous extract of Rhizophora mangle L. bark is used as raw material in pottery making in the State of Espirito Santo, Brazil. This extract presents large quantities of tannins, compounds possessing antioxidant properties. Tannin antioxidant activity, as a plant chemical defense mechanism in the process of stabilizing free radicals, has been an incentive to studies on anti-mutagenicity. The present work aimed to evaluate possible antimutagenic activity of a R. mangle aqueous extract, using the Allium cepa test-system and micronuclear (MN) assay with blockage of cytokinesis in Chinese hamster ovary cells (CHO-K1). The Allium cepa test-system indicated antimutagenic activity against the damage induced by the mutagenic agent methyl methanesulfonate. A reduction in both MN cell frequency and chromosome breaks occurred in both the pre and post-treatment protocols. The MN testing of CHO-K1 cells revealed anti-mutagenic activity of the R. mangle extract against methyl methanesulfonate and doxorubicin in pre, simultaneous and post-treatment protocols. These results suggest the presence of phyto-constituents in the extract presenting demutagenic and bio-antimutagenic activities. Since the chemical constitution of Rhizophora mangle species presents elevated tannin content, it is highly probable that these compounds are the antimutagenic promoters themselves.