6 resultados para HYPERSURFACES
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this work the interaction of the pesticide carbaryl with two groups of biomimetic ligands, peptides and MIPs was screened by multiple minima hypersurfaces (MMH) procedures, through the AM1 semiempirical method. Data related to the properties of the molecular association of the complex biomimetic ligand-pesticide were obtained and compared with another molecular modeling algorithm named Leapfrog, as included in the Sybyl software package, and experimental results from the literature, remarking good correlation between them. All important MMH program parameters (cells number, box size, conformers) were studied and optimized with the aim of getting the minimum computation time without losing the correlation with experimental data. The data demonstrated that MMH approach can be used as a fast biomimetic ligand screening tool for MIPs. In the case of peptides the computation time was not comparable with the molecular dynamics methods conventionally used for this approach. © 2011 Springer Science+Business Media B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We determine the relation amongst the global Lê cycles and the Milnor classes of analytic hypersurfaces defined by a section of a very ample line bundle over a compact complex manifold. The key point is finding appropriate expressions for the global Lê cycles and for the Milnor classes in terms of polar varieties. Our starting points are an interpretation of the Lê cycles given by T. Gaffney and R. Gassler, a formula by A. Parusinski and P. Pragacz for the Milnor classes via McPherson’s functor, and a conjecture of J.-P. Brasselet, that we prove, stating that Milnor classes can be expressed in terms of polar varieties. We then use the work by R. Piegne for Mather classes, by J. Schürmann and M. Tibăr for MacPherson’s classes for constructible functions, and by D. Massey for an extension of the local Lê cycles for constructible sheaves.
Resumo:
In the context of the teleparallel equivalent of general relativity, the Weitzenbock manifold is considered as the limit of a suitable sequence of discrete lattices composed of an increasing number of smaller and smaller simplices, where the interior of each simplex (Delaunay lattice) is assumed to be flat. The link lengths l between any pair of vertices serve as independent variables, so that torsion turns out to be localized in the two-dimensional hypersurfaces (dislocation triangle, or hinge) of the lattice. Assuming that a vector undergoes a dislocation in relation to its initial position as it is parallel transported along the perimeter of the dual lattice (Voronoi polygon), we obtain the discrete analogue of the teleparallel action, as well as the corresponding simplicial vacuum field equations.
Resumo:
This paper deals with two aspects of relativistic cosmologies with closed spatial sections. These spacetimes are based on the theory of general relativity, and admit a foliation into space sections S(t), which are spacelike hypersurfaces satisfying the postulate of the closure of space: each S(t) is a three-dimensional closed Riemannian manifold. The topics discussed are: (i) a comparison, previously obtained, between Thurston geometries and Bianchi-Kantowski-Sachs metrics for such three-manifolds is here clarified and developed; and (ii) the implications of global inhomogeneity for locally homogeneous three-spaces of constant curvature are analyzed from an observational viewpoint.
Resumo:
Pós-graduação em Física - IFT