5 resultados para HUMIFICATION PROCESS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This work consisted of determining the degree of humification of humic substances (HS) extracted from six different Amazonian soils collected from flooded and unflooded regions at different depths (0-10, 10-20, 20-40, and 60 cm). The humic substances were extracted according to procedures recommended by the International Humic Substances Society and characterized using elemental analysis, electron paramagnetic resonance (EPR), and fluorescence spectroscopy. The findings on semiquinone-type free radical concentrations in HS showed variations of 0.10-7.55x10(18) spins g(-1) of carbon (g C)(-1), indicating considerable differences between the humification levels of HS extracted from Amazonian soils. The results showed an average of 1.71 +/- 0.04 x 10(18) spins (g C)(-1), which is congruent with other data reported in the literature on Tropical soils. It was found that, on average, HS extracted from flooded soil contained higher semiquinone-type free radical concentrations than HS extracted from unflooded soils, indicating the influence of humidity in the humification process of organic matter. The humification process varies according to the profile, and the 10-20- and 0-10-cm profiles generally showed more humified HS. The degree of humification of the HS studied here displayed a similar behavior when exposed to fluorescence (excitation at 465 nm) and EPR (R=0.85). However, the low correlation between the C/H, C/O, and C/N atomic ratios and the semiquinone-type free radical concentration/fluorescence intensities indicated that data obtained by these techniques with regard to the degree of humification of HS may lead to different conclusions. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Laser-induced fluorescence (LIF) spectroscopy has been proposed as new method for determining the degree of humification of organic matter (OM) in whole soils. It can be also used to analyze the OM in whole soils containing large amounts of paramagnetic materials, and which are neither feasible to Electron Paramagnetic Resonance (EPR) nor to C-13 Nuclear Magnetic Resonance (NMR) spectroscopy. In the present study, 3 LIF spectroscopy was used to investigate the OM in a Brazilian Oxisol containing high concentration of Fe+3. Soil samples were collected from two areas under conventional tillage (CT), two areas under no-till management (NT) and from a non-cultivated (NC) area under natural vegetation. The results of LIF spectroscopic analysis of the top layer (0-5 cm) of whole soils showed a less aromatic OM in the non-cultivated than in the cultivated soils. This is consistent with data corresponding to HA samples extracted from the same soils and analyzed by EPR, NMR and conventional fluorescence spectroscopy. The OM of whole soils at 5-10 and 10-20 cm depth was also characterized by LIF spectroscopy.Analysis of samples of NT and NC soils showed a higher OM aromatic content at depth. This is a consequence of the accumulation of plant residues at the soil surface in quantities that are too large for microorganisms to metabolize fully, thus, resulting in less aromatic or less hurnified humic substances. In deeper soil layers, the input of residues was lower and further decomposition of humic substances by microorganisms continued, and the aromaticity and degree of humification increased with soil depth. This data indicates that the gradient of humification of OM in the NT soil was similar to those observed in natural soils. Nevertheless, the degree of humification of the OM in the soils under no-till management varied less than that corresponding to non-cultivated soils. This may be because the former have been managed under these practices for only 5 years, in contrast to the continuous humification process occurring in the natural soils. on the other band, LIF spectroscopic analysis of the CT soils showed less pronounced changes or no change in the degree of humification with depth. This indicates that the ploughing and harrowing involved in CT lead to homogenization of the soil and thereby also of the degree of humification of OM throughout the profile. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)