18 resultados para HAZ

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to analyze the effect of successive TIG (tungsten inert gas) welding repairs on the reverse bending fatigue strength of AISI 4130 steel, which is widely used in components critical to the flight-safety. In order to simulate the abrupt maneuvers, wind bursts, motor vibration and helixes efforts, which generate cyclic bending loadings at the welded joints of a specific aircraft component called motor cradle, experimental reverse bending fatigue tests were carried out on specimens made from hot-rolled steel plate, 1.10 mm (0.043 in) thick, by mean of a SCHENK PWS equipment, with load ratio R = -1, under constant amplitude, at 30 Hz frequency and room temperature. It was observed that the bending fatigue strength decreases after the TIG (Tungsten Inert Gas) welding process application on AISI 4130 steel, with subsequent decrease due to re-welding sequence as well. Microstructural analyses and microhardness measurements on the base material, heat-affected zone (HAZ) and weld metal, as well as the effects of the weld bead geometry on the obtained results, have complemented this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structures critical to the flight-safety are commonly submitted to several maintenance repairs at the welded joints in order to prolong the in-service life of aircrafts. The aim of this study is to analyze the effects of Tungsten Inert Gas (TIG) welding repair on the structural integrity of the AISI 4130 aeronautical steel by means of experimental fatigue crack growth tests in base-material, heat-affected zone (HAZ) and weld metal. The tests were performed on hot-rolled steel plate specimens, 0.89 mm thick, with load ratio R = 0.1, constant amplitude, at 10 Hz frequency and room temperature. Increase of the fracture resistance was observed in the weld metal but decreasing in the HAZ after repair. The results were associated to microhardness and microstructural changes with the welding sequence. (C) 2010 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the effect of Gas Tungsten Arc Welding (GTAW) repairs on the axial fatigue strength of an AISI 4130 steel welded joint used in airframe critical to the flight-safety was investigated. Fatigue tests were performed at room temperature on 0.89 mm thick hot-rolled plates with constant amplitude and load ratio of R = 0.1, at 20 Hz frequency. Monotonic tensile tests, optical metallography and microhardness, residual stress and weld geometric factors measurements were also performed. The fatigue strength decreased with the number of GTAW repairs, and was related to microstructural and microhardness changes, as well as residual stress field and weld profile geometry factors, which gave origin to high stress concentration at the weld toe. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foram realizados estudos para avaliar a microestrutura, a dureza e a resistência à corrosão do titânio comercialmente puro-Ti c.p. soldado por laser e utilizado na confecção de prótese sobre implantes. Verificou-se que na soldagem a laser a microestrutura apresentou três regiões distintas: o cordão de solda, a zona afetada pelo calor - ZAC e o metal base. O Ti c.p. possui microestrutura granular, a microestrutura do cordão de solda é mais refinada e de maior dureza do que o metal base. A ZAC obtida por este processo de soldagem foi relativamente pequena quando comparada com o processo de soldagem por brasagem. Os ensaios eletroquímicos mostraram que a região da solda apresentou menor resistência à corrosão em meio de NaCl 0,15 molL-1 à temperatura ambiente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postweld heat treatment (PWHT) is frequently applied to steel pressure vessels, following the requirements of the ASME code (section VIII), which establishes the parameters of the PWHT based on the thickness and chemical composition of the welded section. This work shows the results of an analysis undertaken on a sample of ASTM A537 C1 steel subjected to qualifying welding procedure tests including PWHT (650 degreesC/5 h), the results obtained showed that this PWHT practice promoted a reduction in the mechanical properties of the base metal and the heat-affected zone (HAZ).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Alimentos e Nutrição - FCFAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the 1950s, fatigue is the most important project and operational consideration for both civil and military aircrafts. For some aircraft models the most loaded component is one that supports the motor: the Motor Cradle. Because they are considered critical to the flight safety the aeronautic standards are extremely rigorous in manufacturing them by imposing a zero index of defects on the final weld quality (Safe Life), which is 100% inspected by Non-Destructive Testing/NDT. This study has as objective to evaluate the effects of up to four successive TIG welding repairs on the axial fatigue strength of an AISI 4130 steel. Tests were conducted on hot-rolled steel plate specimens, 0.89 mm thick, with load ratio R = 0.1, constant amplitude, at 20 Hz frequency and in room temperature, in accordance with ASTM E466 Standard. The results were related to microhardness and microstructural and geometric changes resulting from welding cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to value the possibility to join, for pulsed Nd:YAG laser welding, thin foils lap joints for sealing components in corrosive environment. Experimental investigations were carried out using a pulsed neodymium: yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.5 J at increments of 0.25 J with a 4 ms pulse duration. The base materials used for this study were AISI 316L stainless steel and Ni-based alloys foils with 100 mu m thickness. The welds were analyzed by electronic and optical microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. In all the specimens, fracture occurred in the top foil heat-affected zone next to the fusion line. The microhardness was almost uniform across the parent metal, HAZ and weld metal. A slight increase in the fusion zone and heat-affected zone compared to those measured in the base metal was observed. This is related to the microstructural refinement in the fusion zone, induced by rapid cooling of the laser welding. The process appeared to be very sensitive to the gap between couples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work focuses on a study on the fatigue behavior of a microalloyed steel API 5L X70, used in pipes lines to transport oil and gas. These types of steels have excellent mechanical resistance values and ductility and therefore increased their study driven by increased demand for oil and especially natural gas, which consequently raises the need to build new pipelines to transport these products. The oil extraction units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 to 30 years in the marine environment, a hostile environment for high pressure, corrosion, low temperatures and the stresses caused by the movement of water and tides. For analysis, the S-N (stress versus number of cycles) curves were obtained from data collected from bodies-of-proof cylindrical longitudinal, transverse and that one removed from the weld area of the pipe, tested in accordance with ASTM E466. Tensile tests were performed for characterizing the mechanical properties of the samples and welded joints, concluded that the values meet the specifications of the standard API 5L. To characterize microstructural material, also metallographic analysis was made of regions of the base metal and the HAZ. The results of fatigue tests demonstrated a higher life for the specimens removed from the longitudinal direction the pipe, followed by those in the transverse direction and, finally, the welded joint. The origins of the fatigue cracks were determined by scanning electron microscopy (SEM)