14 resultados para Gymnodactylus amarali
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the parasitemia variation of three Hepatozoon species in Brazilian snakes. This study was conducted between 2001 and 2003 and included Hepatozoon terzii from Boa constrictor amarali, and Hepatozoon migonei and Hepatozoon cyclagrasi from Hydrodynastes gigas. It was observed that the parasitemia tended to decrease in all three Hepatozoon species but the parasites were not eliminated. This data suggest that Hepatozoon infection may be similar to Toxoplasma gondii infection, in that it persists throughout host life.
Resumo:
As ectothermic animals, snakes depend exclusively on the environment for proper temperature maintenance, which may greatly influence their activity. Twenty-five adult Boa constrictor amarali snakes maintained in captivity were used to determine the influence of seasons on their hematologic values and electrophoretic profile of hemoglobin. A complete blood cell count (CBC) and examination for hemoparasites were performed in the summer and winter of 2004. Hemoglobin was stored for later electrophoresis. Significant differences (P < 0.05) were obtained in RBC, WBC. lymphocyte, thrombocyte, and monocyte counts, demonstrating the importance of the period of the year in the interpretation of reference values in these animals. Two snakes were detected with blood parasites (Hepatozoon sp.) in the winter and four in the summer. although it appears that their presence did not cause any significant alterations in the CBC. The electrophoretic analysis of the samples demonstrated two-four hemoglobin bands in this species.
Resumo:
The phylogenetic relationship of the notosuchians Mariliasuchus amarali (Campanian; Bauru Group) and Notosuchus terrestris (Santonian; Neuquen Group) is revised. Morpho-anatomical evaluation of Mariliasuchus in the current bibliography indicate close relationship with Notosuchus, while cladistic analysis either related Mariliasuchus to Candidodon itapecuruense (Albian/eo-Cenomanian; Sao Luis-Grajau Basin), as part of the phylotaxon Candidodontidae, or to Comahuesuchus brachybuccalis (Santonian; Neuquen Group). Comparative study of specimens shows similarities on the palate, choanae, dentition, retroarticular process, and other structures from Mariliasuchus and Notosuchus supporting the original classification as a Notosuchidae. Preliminary phylogenetic analysis sets these taxa as sister-groups. Reevaluation of a previously published phylogenetic analysis from other authors provides further support for the Mariliasuchus + Notosuchus clade. The current work indicates that Mariliasuchus is a Notosuchidae, refuting its allocation as a Candidodontidae. The influence of character construction and the definition of Notosuchia are discussed.
Resumo:
Carinated teeth are common in Mesoeucrocodylia, and the occurrence of denticles over the carinae is related to high predacious species, often referred as ziphodont. This characteristic is broadly recognized as homoplastic. Carinae morphology is cryptic, difficult to be studied under common techniques, and Scanning Electronic Microscopy (SEM) allows the access to detailed information, offering a higher degree of confidence. Previous SEM study allowed the recognition of true/false ziphodont patterns, according to the morphology of the denticles, but such studies on gondwanan mesoeucrocodyles are uncommon. Mariliasuchus amarali is an Upper Cretaceous notosuchian mesoeucrocodyle from South America (Bauru Group, Brazil), with carinated teeth and specialized dentition. Its geological and biochronological distribution are reappraised. SEM study of two teeth shows carinae composed of isolated tuberous anisomorphic true denticles, supporting previous study. Enamel ornamentation does not develop over the carinae, and fabric becomes anastomosed in middle and posterior teeth. Carinae only occur in posterior molariform teeth, related to food processing. Morphological variability of Mariliasuchus is commented, focusing on dentition. Overall characteristics, molariform morphology and wear planes support a non-predacious habit for Matiliasuchus. Matiliasuchus pattern could not be related to true/false ziphodont patterns, either by morphology or function, and is defined as ziphomorph. Ziphomorph pattern is evaluated within the range of mesoeucrocodyles. The detailed study of homoplastic characteristics, such as dental carinae, may provide useful apomorphic information for cladistic analysis.
Resumo:
Hepatozoon species are the most abundant hemoparasites of snakes. Its identification has been based mainly on the morphologic characterization of the gamonts in the peripheral blood of the vertebrate host and also of the cysts found in the internal organs of the vertebrate and invertebrate hosts. Using a computerized image analysis system, we studied five species of Hepatozoon from recently captured snakes in Botucatu, State of São Paulo, Brazil, to evaluate the importance of the morphology and morphometry of the gamonts for the characterization of Hepatozoon species and to analyze the morphologic changes induced in the erythrocytes by the parasite. The studied species were H. terzii of Boa constrictor amarali, Hepatozoon sp. of Crotalus durissusterrificus, H. philodryasi of Philodryas patagoniensis, and H. migonei and H. cyclagrasi of Hydrodynastes gigas. We observed three different groups, one of them including the species H. terzii, H. philodryasi and Hepatozoon sp. of C. durissus terrificus; and the other two consisting of H. migonei and H. cyclagrasi. Degree of alterations in the erythrocytes was variable and it may be useful for characterization of Hepatozoon species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We quantified the oxygen uptake rates ((V) over dot O-2) and time spent, during the constriction, inspection, and ingestion of prey of different relative sizes, by the prey-constricting boid snake Boa constrictor amarali. Time spent in prey constriction varied from 7.6 to 16.3 min, and (V) over dot O-2 during prey constriction increased 6.8-fold above resting values. This was the most energy expensive predation phase but neither time spent nor metabolic rate during this phase were correlated with prey size. Similarly, prey size did not affect the (V) over dot O-2 or duration of prey inspection. Prey ingestion time, on the other hand, increased linearly with prey size although (V) over dot O-2 during this phase, which increased 4.9-fold above resting levels, was not affected by prey size. The increase in mechanical difficulty of ingesting larger prey, therefore, was associated with longer ingestion times rather than proportional increases in the level of metabolic effort. The data indicate that prey constriction and ingestion are largely sustained by glycolysis and the intervening phase of prey inspection may allow recovery between these two predatory phases with high metabolic demands. The total amount of energy spent by B. c. amarali to constrict, inspect, and ingest prey of sizes varying from 5 to 40% of snake body mass varied inversely from 0.21 to 0.11% of the energy assimilated from the prey, respectively. Thus, prey size was not limited by the energetic cost of predation. on the contrary, snakes feeding on larger prey were rewarded with larger energetic returns, in accordance with explanations of the evolution of snake feeding specializations. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
We investigated the combined effect of meal size and temperature on the aerobic metabolism and energetics of digestion in Boa constrictor amarali. Oxygen uptake rates ((V) over dot o(2)) and the. duration of the digestion were determined in snakes fed with meals equaling to 5%, 10%, 20%, and 40% of the snake's body mass at 25degrees and 30 degreesC. The maximum (V) over dot o(2) values attained during digestion were greater at 30 degreesC than at 25 degreesC. Both maximal (V) over dot (o2) values and the duration of the specific dynamic action. (SDA) were attained sooner at 30 degreesC than at 25 degreesC. Therefore, the temperature effect on digestion in Boa is characterized by the shortening of the SDA duration at the expense of increased. Energy allocated to SDA was not affected by meal size but. was greater at 25 degreesC compared to 30 degreesC. This indicates that a postprandial thermophilic response can be advantageous not only by decreasing the duration of digestion but also by improving digestive efficiency. Maximal (V) over dot o(2) and SDA duration. increased with meal size at both temperatures.
Resumo:
We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other colubrid groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE