5 resultados para Group Integration
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We show that all Green's functions of the Schwinger and axial models can be obtained one from the other. In particular, we show that the two models have the same chiral anomaly. Finally it is demonstrated that the Schwinger model can keep gauge invariance for an arbitrary mass, dispensing with an additional gauge group integration.
Resumo:
This work summarizes the HdHr group of Hermitian integration algorithms for dynamic structural analysis applications. It proposes a procedure for their use when nonlinear terms are present in the equilibrium equation. The simple pendulum problem is solved as a first example and the numerical results are discussed. Directions to be pursued in future research are also mentioned. Copyright (C) 2009 H.M. Bottura and A. C. Rigitano.
Resumo:
The integration of outcrop and subsurface information, including micropaleontological data, facies and sequence stratigraphic studies, and oxygen isotope analysis, allow us to present a new stratigraphic model for the Cretaceous continental deposits of the Bauru Group, Brazil. Thirty-eight fossil taxa were recovered from these deposits, including 29 species of ostracodes and 9 species of charophytes. Seven of these ostracode species and three subspecies are new and formally described here. The associations of Chara barbosai - Ilyocypris cf. riograndensis, found in the Adamantina Formation, and Amblyochara sp. - Neuquenocypris minor mineira nov. subsp., found in the Marília Formation. Ponte Alta Member, represent two distinct groups that are respectively Turonian-Santonian and Maastrichtian (probably Late Maastrichtian) in age. Therefore, a hiatus, encompassing more than 11 Ma, separates those two formations. From bottom to top, four depositional cycles were recognized in the Bauru Group in western São Paulo: cycles 1 and 2 belong to Caiuá Formation (fluvio-lacustrine and lacustrine deposits in the Presidente Prudente region), cycle 3 to the Santo Anastácio and lower Adamantina Formation (respectively fluvial and lacustrine deposits), and cycle 4 to the upper Adamantina Formation (fluvio-lacustrine facies). An erosional unconformity separates the Caiuá and Santo Anastácio Formations (between cycles 2 and 3). The Marília Formation is a distinct unit from the underlying succession; it does not occur in western São Paulo, but is found in restricted areas of São Paulo, Minas Gerais, Mato Grosso do Sul and Goiás States. During the deposition of the Bauru Group (Aptian? to Maastrichtian) the climate was hot and arid-semiarid. Shallow lakes underwent fluctuations in expansion (wet phases) and contraction (dry phases), as well as variations in salinity. During the deposition of the Adamantina Formation (Turonian-Santonian) there were long, dry periods that caused segmentation of large lakes (due to topographic irregularities in the basaltic substrate) and sometimes exposures of the lake floors; when flooded these lake floors were colonized by extensive meadows of single species of charophytes. Small ephemeral ponds, that were hydrochemically unstable and colonized by multiple species of charophytes, were the depositional sites for the marls and mudstones of Ponte Alta Member (Maastrichtian, Late Maastrichtian?). Our micropaleontological age control, combined with the Late Cretaceous ages of volcanic ashes found in the southeastern Brazil coastal basins, and the stratigraphic position of analcimites from the Jaboticabal-SP region, suggest a Late Coniacian-Santonian age for important magmatic events occurred in the interior of Brazil (north-central São Paulo State, Triângulo Mineiro, and southwestern Goiás State).
Resumo:
Background: Previous studies have shown that membrane elevation results in predictable bone formation in the maxillary sinus provided that implants can be placed as tent poles. In situations with an extremely thin residual crest which impairs implant placement, it is possible that a space-making device can be used under the sinus membrane to promote bone formation prior to placement of implants. Purpose: The present study was conducted to test the hypothesis that the use of a space-making device for elevation of the sinus membrane will result in predictable bone formation at the maxillary sinus floor to allow placement of dental implants. Materials and Methods: Eight tufted capuchin primates underwent bilateral sinus membrane elevation surgery, and a bioresorbable space-making device, about 6 mm wide and 6 mm in height, was placed below the elevated membrane on the sinus floor. An oxidized implant (Nobel Biocare AB, Gothenburg, Sweden) was installed in the residual bone protruding into the created space at one side while the other side was left without an implant. Four animals were sacrificed after 6 months of healing. The remaining four animals received a second implant in the side with a space-making device only and followed for another 3 months before sacrifice. Implant stability was assessed through resonance frequency analysis (RFA) using the Osstell™ (Osstell AB, Gothenburg, Sweden) at installation, 6 months and 9 months after the first surgery. The bone-implant contact (BIC) and bone area inside the threads (BA) were histometrically evaluated in ground sections. Results: Histologically there were only minor or no signs of bone formation in the sites with a space-making device only. Sites with simultaneous implant placement showed bone formation along the implant surface. Sites with delayed implant placement showed minor or no bone formation and/or formation of a dense fibrous tissue along the apical part of the implant surface. In the latter group the apical part of the implant was not covered with the membrane but protruded into the sinus cavity. Conclusions: The use of a space-making device, with the design used in the present study, does not result in bone formation at the sinus floor. However, membrane elevation and simultaneous placement of the device and an implant does result in bone formation at the implant surface while sites with implants placed 6 months after membrane elevation show only small amounts of bone formation. It is suggested that lack of stabilization of the device and/or a too extensive elevation of the membrane may explain the results. © 2009, Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)