24 resultados para Gravity waves
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1 + 1) traveling-wave solutions for almost all the values of the Bond number θ (the special case θ=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis. ©2005 The American Physical Society.
Resumo:
In order to describe the dynamics of monochromatic surface waves in deep water, we derive a nonlinear and dispersive system of equations for the free surface elevation and the free surface velocity from the Euler equations in infinite depth. From it, and using a multiscale perturbative method, an asymptotic model for small wave steepness ratio is derived. The model is shown to be completely integrable. The Lax pair, the first conserved quantities as well as the symmetries are exhibited. Theoretical and numerical studies reveal that it supports periodic progressive Stokes waves which peak and break in finite time. Comparison between the limiting wave solution of the asymptotic model and classical results is performed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present an implementation of the F-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency f(0) range from 100 Hz to 1 kHz and the frequency dependent spindown f(1) range from -1.6(f(0)/100 Hz) x 10(-9) Hz s(-1) to zero. A large part of this frequency-spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the F-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the fast Fourier transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the F-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than 5 x 10(-24).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper proposes a different experimental setup compared with the traditional ones, in order to determine the acceleration of gravity, which is carried out by using a fluid at a constant rotation. A computerized rotational system-by using a data acquisition system with specific software, a power amplifier and a rotary motion sensor-is employed in order to evaluate the angular velocity and g. An equation to determine g is inferred from fluid mechanics. For this purpose, the fluid's parabolic shape inside a cylindrical receptacle is considered using a rotational movement.
Resumo:
Particles in Saturn's main rings range in size from dust to kilometer-sized objects. Their size distribution is thought to be a result of competing accretion and fragmentation processes. While growth is naturally limited in tidal environments, frequent collisions among these objects may contribute to both accretion and fragmentation. As ring particles are primarily made of water ice attractive surface forces like adhesion could significantly influence these processes, finally determining the resulting size distribution. Here, we derive analytic expressions for the specific self-energy Q and related specific break-up energy Q(star) of aggregates. These expressions can be used for any aggregate type composed of monomeric constituents. We compare these expressions to numerical experiments where we create aggregates of various types including: regular packings like the face-centered cubic (fcc), Ballistic Particle Cluster Aggregates (BPCA), and modified BPCAs including e.g. different constituent size distributions. We show that accounting for attractive surface forces such as adhesion a simple approach is able to: (a) generally account for the size dependence of the specific break-up energy for fragmentation to occur reported in the literature, namely the division into "strength" and "gravity" regimes and (b) estimate the maximum aggregate size in a collisional ensemble to be on the order of a few tens of meters, consistent with the maximum particle size observed in Saturn's rings of about 10 m. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents an experimental technique for structural health monitoring (SHM) based on Lamb waves approach in an aluminum plate using piezoelectric material as actuators and sensors. Lamb waves are a form of elastic perturbation that remains guided between two parallel free surfaces, such as the upper and lower surfaces of a plate, beam or shelf. Lamb waves are formed when the actuator excites the surface of the structure with a pulse after receiving a signal. Two PZTs were placed in the plate surface and one of them was used to send a predefined wave through the structure. Thus, the other PZT (adjacent) becomes the sensor. Using this methodology, this paper presents one case of damage detection considering the aluminum plate in the free-free-free-free boundary condition. The damage was simulated by adding additional mass on the plate. It is proposed two damage detection indexes obtained from the experimental signal, involving the Fast Fourier Transform (FFT) and the power spectral density (PSD) that were computed using the output signal. The results show the viability of the presented methodology to damage detection in smart structures
Resumo:
The purpose of the work is to study the existence and nonexistence of shock wave solutions for the Burger equations. The study is developed in the context of Colombeau's theory of generalized functions (GFs). This study uses the equality in the strict sense and the weak equality of GFs. The shock wave solutions are given in terms of GFs that have the Heaviside function, in x and ( x, t) variables, as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function, in R-n and R-n x R, in the distributional limit sense.
Resumo:
Introduction and objectives: Catfish occur in marine and freshwater environments worldwide. They have three serrated venomous bony stings in the dorsal and pectoral fins that are used for defence against predators and are refilled by glandular tissues under the epithelium. However, some catfishes do not have poisonous glands next to the sting and cause traumatic wounds without poisoning. The objective of this study was to provide data for, and comment on, the epidemiological and clinical problems caused by marine catfish.Patients and methods: the authors have observed, followed and documented 127 injuries caused by marine catfish stings during different phases of the envenoming over a time period of 8 years at three points along the Western Atlantic Ocean coast.Results: the patients presented intense pain during the acute phase of envenoming and complications, such as bacterial and fungi infections and retention of bony fragments, in the later phase. Immersion of the affected extremity in hot water was used in about 20% of cases with excellent results.Discussion: Injuries caused by marine catfish are common (about 20% of injuries caused by marine animals in a series of more than 700 injuries recorded by the author) and cause intense pain and later complications. Immersion of the affected extremity in hot water results in improvement in the acute phase, but does not prevent the appearance of secondary infection or foreign body reactions. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Dirac eigenvalues form a subset of observables of the Euclidean gravity. The symplectic two-form in the covariant phase space could be expressed, in principle, in terms of the Dirac eigenvalues. We discuss the existence of the formal solution of the equations defining the components of the symplectic form in this framework. (C) 2002 Published by Elsevier B.V. B.V.