25 resultados para Graph operations
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents two approaches of Artificial Immune System for Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically the well drilling operation stages. The classification is carried out through the analysis of some mud-logging parameters. In order to validate the performance of AIS techniques, the results were compared with others classification methods: neural network, support vector machine and lazy learning.
Resumo:
During the petroleum well drilling operation many mechanical and hydraulic parameters are monitored by an instrumentation system installed in the rig called a mud-logging system. These sensors, distributed in the rig, monitor different operation parameters such as weight on the hook and drillstring rotation. These measurements are known as mud-logging records and allow the online following of all the drilling process with well monitoring purposes. However, in most of the cases, these data are stored without taking advantage of all their potential. On the other hand, to make use of the mud-logging data, an analysis and interpretationt is required. That is not an easy task because of the large volume of information involved. This paper presents a Support Vector Machine (SVM) used to automatically classify the drilling operation stages through the analysis of some mud-logging parameters. In order to validate the results of SVM technique, it was compared to a classification elaborated by a Petroleum Engineering expert. © 2006 IEEE.
Resumo:
Motivated by rising drilling operation costs, the oil industry has shown a trend towards real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated to parameters modeling. One of the drill-bit performance evaluators, the Rate of Penetration (ROP), has been used in the literature as a drilling control parameter. However, the relationships between the operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on the Auto-Regressive with Extra Input Signals model, or ARX model, to accomplish the system identification and on a Genetic Algorithm (GA) to provide a robust control for the ROP. Results of simulations run over a real offshore oil field data, consisted of seven wells drilled with equal diameter bits, are provided. © 2006 IEEE.
Resumo:
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.
Resumo:
A method for context-sensitive analysis of binaries that may have obfuscated procedure call and return operations is presented. Such binaries may use operators to directly manipulate stack instead of using native call and ret instructions to achieve equivalent behavior. Since definition of context-sensitivity and algorithms for context-sensitive analysis have thus far been based on the specific semantics associated to procedure call and return operations, classic interprocedural analyses cannot be used reliably for analyzing programs in which these operations cannot be discerned. A new notion of context-sensitivity is introduced that is based on the state of the stack at any instruction. While changes in 'calling'-context are associated with transfer of control, and hence can be reasoned in terms of paths in an interprocedural control flow graph (ICFG), the same is not true of changes in 'stack'-context. An abstract interpretation based framework is developed to reason about stack-contexts and to derive analogues of call-strings based methods for the context-sensitive analysis using stack-context. The method presented is used to create a context-sensitive version of Venable et al.'s algorithm for detecting obfuscated calls. Experimental results show that the context-sensitive version of the algorithm generates more precise results and is also computationally more efficient than its context-insensitive counterpart. Copyright © 2010 ACM.
Resumo:
This paper proposes a cluster partitioning technique to calculate improved upper bounds to the optimal solution of maximal covering location problems. Given a covering distance, a graph is built considering as vertices the potential facility locations, and with an edge connecting each pair of facilities that attend a same client. Coupling constraints, corresponding to some edges of this graph, are identified and relaxed in the Lagrangean way, resulting in disconnected subgraphs representing smaller subproblems that are computationally easier to solve by exact methods. The proposed technique is compared to the classical approach, using real data and instances from the available literature. © 2010 Edson Luiz França Senne et al.
Resumo:
In order for the projects of recovery of degraded areas to be successful, it is necessary to have a perfect recovery of the soil where the revegetation will be implanted as an initial action in the recovery of the whole process. The use of native forest species fully adapted to these types of terrain is another aspect of great importance, once the non-selection of these species, even if abundant in the surrounding areas, as it is in our case, implies great mortality of individuals during the planting and their low fixation during the process. The establishment of a monitoring program that contemplates the advancements obtained in the soil, the vegetation and the return of wild animals also collaborate in the evaluation of the success of the process. And, finally, the effective participation of the mining company, accepting and applying the techniques tested and indicated by research, even if, initially, the return time is longer than expected, also guarantees the success of the process. The mining company not only implemented a partnership with important universities in Brazil to obtain solutions for the environmental problems but also applied the developed techniques and the monitoring program. In the present work, we have attempted to summarize important aspects to evaluate the advancements in the rehabilitation plan for those areas, being here presented some results of the monitoring of areas under different levels of recovery, in accordance with the techniques adopted. Biological parameters of the soil were used to verify the efficiency of these different techniques in the recovery process. This work is part of the monitoring program of areas in rehabilitation by the mining company, implemented as of 1999 and in partnership with universities. The microbial activity was determined through the quantification of the carbon and nitrogen microbial biomass (BMC and BMN) and the activity of the dehydrogenase evaluated in the mining floor and tailing areas in different levels of soil preparation and planting of native species. The analysis of the parameters studied revealed that the preparation of the soil, following the three years proposed by the methodology, was important for the success in establishing the rehabilitation process. Some of the areas analyzed already show some parameters with values close or superior to those found in the capoeira (secondary forest), the latter being the non-treated area. © 2010 WIT Press.
Resumo:
Thermal faceprint has been paramount in the last years. Since we can handle with face recognition using images acquired in the infrared spectrum, an unique individual's signature can be obtained through the blood vessels network of the face. In this work, we propose a novel framework for thermal faceprint extraction using a collection of graph-based techniques, which were never used to this task up to date. A robust method of thermal face segmentation is also presented. The experiments, which were conducted over the UND Collection C dataset, have showed promising results. © 2011 Springer-Verlag.
Resumo:
The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study is to understand how an assembly company, that is considered a focal company in the chain of Brazilian white goods sector, can influence the supply chain management established with its first tier suppliers. This is an exploratory qualitative study in which the information was gathered through direct observations, documents' retention, and data from interviews held with management-level employees of the sales and product development areas of the focal company and of the production area of the suppliers' companies. This study indicates that the operations strategy of the focal company influences the supply chain management and that the common business processes shared by its suppliers are a way to verify the truth of such statement. The suppliers cooperate closely with the focal company when complementing their business processes and consequently supporting the company to pursue its operations strategy. A set of mechanisms to aid the comprehension of how the operations strategy can affect the business processes and therefore to achieve the result of this research were adopted. © EuroJournals Publishing, Inc. 2012.