52 resultados para Gneiss dome

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes an application of a multilayer perceptron neural network technique to correct dome emission effects on longwave atmospheric radiation measurements carried out using an Eppley Precision Infrared Radiometer (PIR) pyrgeometer. It is shown that approximately 7-month-long measurements of dome and case temperatures and meteorological variables available in regular surface stations (global solar radiation, air temperature, and air relative humidity) are enough to train the neural network algorithm and correct the observed longwave radiation for dome temperature effects in surface stations with climates similar to that of the city of São Paulo, Brazil. The network was trained using data from 15 October 2003 to 7 January 2004 and verified using data, not present during the network-training period, from 8 January to 30 April 2004. The longwave radiation values generated by the neural network technique were very similar to the values obtained by Fairall et al., assumed here as the reference approach to correct dome emission effects in PIR pyrgeometers. Compared to the empirical approach the neural network technique is less limited to sensor type and time of day (allows nighttime corrections).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The external morphology of seeds and post-germination developmental stages of Angelonia salicariifolia Bonpl. (Scrophulariaceae) were investigated using scanning electron microscopy. Some structural features of the seed exotesta and seedling in Angelonia are presented for the first time and are of potential taxonomic value for this neotropical genus. The seeds are very small (0.9-1.7 mm long and 0.5-0.9 mm wide), ovate, with a reticulate-crested exotesta, reticules arranged uniformly in longitudinal rows, with a high density of microcilia-like projections on the cell wall of the reticule base and on the edge of the crests. The hilum is located beside the micropyle at the narrow end of the seed. Germination is epigeal. During germination the radicle develops, followed by elongation of the hypocotyl and primary root. At this stage dense root hairs develop on the lower part of the hypocotyl. The apical bud-located between the cotyledons-begins to develop after the cotyledons have unfolded. The cotyledons are equal in size, sessile and ovate. The seedlings have two types of trichomes, one characteristic of the cotyledons and first pair of leaves (glandular, sessile, four-celled head with quadrangular shape) and the other characteristic of the hypocotyl and epicotyl (stalked, erect, elongate and three-celled with dome-shaped unicellular head). (C) 2001 Annals of Botany Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of geologic, petrologic, and U-Pb geochronologic data the basement rocks in the east-central part of the Rondonia Tin Province (RTP, southwestern Amazonian craton) are grouped into five lithologic associations: (1) tonalitic gneiss (1.75 Ga); (2) enderbitic granulite (1.73 Ga); (3) paragneiss; (4) granitic and charnockitic augen gneisses (1.57-1.53 Ga); and (5) fine-grained granitic gneiss and charnockitic granulite (1.43-1.42 Ga). The first three are related to development of the Paleoproterozoic Rio Negro-Juruena Province and represent the oldest crust in the region. The tonalitic gneisses and enderbitic granulites show calc-alkaline affinities and Nd isotopic compositions (initial epsilon(Nd) = +0-1 to -1.5; T-DM of 2.2-2.1 Ga) that suggest a continental arc margin setting for the original magmas. The paragneisses yield T-DM values of 2.2-2.1 Ga suggesting that source material was primarily derived from the Ventuari-Tapajos and Rio Negro-Juruena crusts, but detrital zircon ages and an intrusive granitoid bracket deposition between 1.67 and 1.57 Ga. The granitic and charnockitic augen gneisses show predominantly A-type and within-plate granite affinities, but also some volcanic arc granite characteristics. The initial epsilon(Nd) values (+0.6 to +2.0) indicate mixing of magmas derived from depleted mantle and older crustal sources. These rocks are correlated to the 1.60-1.53 Ga Serra da Providencia intrusive suite that reflects inboard magmatism coeval with the Cachoeirinha orogen located to the southeast. The fine-grained granitic gneiss and charnockitic granulites represent the first record of widespread magmatism at 1.43-1.42 Ga in northern Rondonia. Their geochemical signatures and the slightly positive initial epsilon(Nd) values (+0.7 to +1.2) are very similar to those of the most evolved granites of the calc-alkaline Santa Helena batholith farther southeast. U-Pb monazite and Sm-Nd whole-rock-garnet ages demonstrate that a high-grade tectonometa-morphic episode occurred in this region at 1.33-1.30 Ga. This episode attained upper-amphibolite conditions and is interpreted as the peak of the Rondonian-San Ignacio orogeny. The U-Pb and Sm-Nd data presented here and data published on rapakivi granites elsewhere indicate that the east-central part of the RTP is a poly-orogenic region characterized by successive episodes of magmatism, metamorphism, and deformation between 1.75 and 0.97 Ga. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T > 750 degrees C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramatic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events.We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 +/- 2.1 Ma, Chalk Mountain 377.7 +/- 2.5 Ma, Mt. Airy 334 +/- 3 Ma, Stone Mountain 335.6 +/- 1.0 Ma, and Rabun 335.1 +/- 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Serido Group is a deformed and metamorphosed metasedimentary sequence that overlies early Paleoproterozoic to Archean basement of the Rio Grande do Norte domain in the Borborema Province of NE Brazil. The age of the Serido Group has been disputed over the past two decades, with preferred sedimentation ages being either Paleoproterozoic or Neoproterozoic. Most samples of the Serido Formation, the upper part of the Serido Group, have Sm-Nd T-DM ages between 1200 and 1600 Ma. Most samples of the Jucurutu Formation, the lower part of the Serido Group, have T-DM ages ranging from 1500 to 1600 Ma; some basal units have T-DM ages as old as 2600 Ma, reflecting proximal basement. Thus, based on Sm-Nd data, most, if not all, of the Serido Group was deposited after 1600 Ma and upper parts must be younger than 1200 Ma.Cathodoluminescence photos of detrital zircons show very small to no overgrowths produced during ca. 600 Ma Brasiliano deformation and metamorphism, so that SHRIMP and isotope dilution U-Pb ages must represent crystallization ages of the detrital zircons. Zircons from meta-arkose near the base of the Jucurutu Formation yield two groups of ages: ca. 2200 Ma and ca. 1800 Ma. In contrast, zircons from a metasedimentary gneiss higher in the Jucurutu Formation yield much younger ages, with clusters at ca. 1000 Ma and ca. 650 Ma. Zircons from metasedimentary and metatuffaceous units in the Serido Formation also yield ages primarily between 1000 and 650 Ma, with clusters at 950-1000, 800, 750, and 650 Ma. Thus, most, if not all, of the Serido Group must be younger than 650 Ma. Because these units were deformed and metamorphosed in the ca. 600 Ma Brasiliano fold belt during assembly of West Gondwana, deposition probably occurred ca. 610-650 Ma, soon after crystallization of the youngest population of zircons and before or during the onset of Brasiliano deformation.The Serido Group was deposited upon Paleoproterozoic basement in a basin receiving detritus from a variety of sources. The Jucurutu Formation includes some basal volcanic rocks and initially received detritus from proximal 2.2-2.0 Ga (Transamazonian) to late Paleoproterozoic (1.8-1.7 Ga) basement. Provenance for the upper Jucurutu Formation and all of the Serido Formation was dominated by more distal and younger sources ranging in age from 1000 to 650 Ma. We suggest that the Serido basin may have developed as the result of late Neoproterozoic extension of a pre-existing continental basement, with formation of small marine basins that were largely floored by cratonic basement (subjacent oceanic crust has not yet been found). Immature sediment was initially derived from surrounding land; as the basin evolved much of the detritus probably came from highlands to the south (present coordinates). Alternatively, if the Patos shear zone is a major terrane boundary, the basin may have formed as an early collisional foredeep associated with south-dipping subduction. In any case, within 30 million years the region was compressed, deformed, and metamorphosed during final assembly of West Gondwana and formation of the Brasiliano-Pan African fold belts. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper evaluates the applicability of products of remote sensing in studies related to the structural conditionings of slope stability in saprolites, usually conducted through field surveys. In this article we use a regional approach concentrating on an area of lane duplication of a major highway. In that area, resistance reduction to stress and the low cohesions of muscovite saprolites - schists and gneiss which are associated to geological discontinuities, all result in inumerous instabilities. The joints and foliations were extracted from satellite images as well as aerial photographs. Following that, the study area was divided into various sectors based on the directions and dips of the foliation. Different relationships between the structures and the slopes were analyzed in order to indicate the most feasible type of slope failure in each sector of analysis. The aim of the study is to subsidize further detailed future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paragua Terrane (Bolivia and Mato Grosso regions) and in the Alto Guapore Belt and the Rio Negro-Juruena Province (Rondonia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsas Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paragua Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guapore Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paragua Terrane, and the Colorado Complex and the Nova Mamore Metamorphic Suite in the Alto Guapore Belt. The Paragua Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40-1.36 Ga), and the Teotonio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34-1.36 Ga), and the Sao Lourenco-Caripunas Intrusive Suite (1.31-1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review is presented concerning Archaean granulites occurring in some old domains of the South American Platform, which was consolidated at the end of the Brazilian Cycle (900-500 Ma). The rocks occur in different geotectonic environments and show variable ages, structures and lithological associations. The most important complexes are the Atlantic Granulite Belt in the São Francisco Craton and the Goias Granulite Belt in the Central Goias Massif, both several hundred kilometres long. The former is composed of the Caraibas Complex, the Jequié Complex, the Salvador Complex and several minor granulite occurrences along the Brazilian coast in the States of Espírito Santo and Rio de Janeiro. The latter includes the large basic-ultrabasic complexes of Barro Alto, Tocantins and Canabrava. Both belts consist of massive or foliated rocks, banded or homogeneous and varying from acidic to ultrabasic in composition. They are the result of metamorphism affecting diversified supra- and infracrustal material. The Atlantic Granulite Belt lies between greenstone/granite terrains which show ovoid and boomerang-type dome structures. The contacts between both are either tectonic or transitional. Another occurrence of Archaean granulites comprises intercalations of palaeosomes and melanosomes within migmatites and anatectic rocks. These vary in size from small lenses to irregular complexes which may attain sizes of several hundred square kilometres. Apart from migmatites, they are associated with gneisses, schists and granitoid bodies. They are located in regions which underwent remobilization of varying intensity during the Middle and Late Precambrian. The rocks show polymetamorphism, K-feldspar blastesis, tectonic overprinting and isotopic rejuvenation. These granulites are in some cases very similar to those formed during the Middle Precambrian. In some places it is therefore quite difficult to distinguish between Early and Middle Precambrian granulites - the more so, since interpretations of radiometric age values are largely controversial. At present there is no evidence of granulitic rocks related to the Late Precambrian geotectonic cycles of Brazil. © 1979.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Araguaia-Tocantins geosuture, which separates the Araguaia Fold Belt (AFB) from the Archean Amazonian Craton, was active in the late Middle Proterozoic. The Baixo Araguaia Supergroup was deposited, consisting of the Estrondo Group (lower quartzites with intercalated schists), Xambioá Formation (schists), and Canto da Vazante Formation (upper feldspathic schists); and the Tocantins Group consisting of the Couto Magalhaës Formation (phyllites, quartzites, slates, limestones, and metacherts) and Pequizeiro Formation (upper chlorite schists); and associated mafic-ultramafic bodies. The deformational history includes four regional phases of deformation within this supracrustal sequence: recumbent folds with vergence to the west; refolding with a N-S trend; an intense crenulation episode; and late thrusting from east to west. Metamorphism is of intermediate or intermediate-high pressure type with garnet, biotite, chlorite, and sericite isograds succeeded by a slightly or non-metamorphosed zone, from east to west. Rocks surrounding sparse gneissic-cored domes contain isograds of staurolite, kyanite, and fibrolite. These isograds are believed to be associated with the 1100 Ma Uruaçuano event. The Brasiliano Orogeny strongly affected the AFB with displacements due to transcurrent reactivation of great and old faults of the basement, slight folding in the supracrustal sequence, intrusion of small granite bodies, and development of domes with associated normal faults. The area underlain by the Estrondo Group was uplifted at this time, causing the deposition of the Rio das Barreiras polymictic conglomerate of the central area. K-Ar and Rb-Sr analyses date this thermo-tectonic event at 550 ± 100 Ma. The Archean basement is exposed in the cores of domes as a granite-gneiss association, the Colméia complex, which shows thermo-tectonic features that may be interpreted as polycyclic imprints (Jequié, Transamazonian?, Uruaçuano, and Brasiliano Events). © 1989.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural, geochemical, and isotope studies were carried out on the gold deposits of the Pontes e Lacerda region (Mato Grosso state, Brazil), where rocks of the Aguapei and Rondoniano mobile belts (southwestern Amazonian craton) occur. The orebodies are hosted in metavolcanic, gneiss-granite, quartzite, tonalite, and granite units. Tectonics involve oblique overthrusting (from northeast to southwest), which led to the formation of recumbent folds and thrusts (pathways for the mineralizing fluids), upright folds, and faults with dominant strike-slip component. These unconformities represent potential sites for mineralization. During geological mapping, it was observed that the orebodies consist of quartz, pyrite, and gold, and that the hydrothermal alteration zone contains quartz, sericite, pyrite (altered to limonite), and magnetite (altered to hematite). Chalcopyrite, galena, and sphalerite occur only in the Onça deposit. Chemical analysis of sulfides indicates high contents of Bi, Se, and Te in sulfides and gold, suggesting plutonic involvement in the origin of hydrothermal solutions. K-Ar dating of hydrothermal sericites from gold veins yielded ages in the range from 960 to 840 Ma, which may indicate the age of original crystallization of sericite. Pb-Pb dating in galenas yielded model ages in the range from 1000 to 800 Ma for the Onça deposit, which is in agreement with K-Ar ages. Pb-isotopic ratios indicate high U/Pb and low Th/Pb for the upper-crustal Pb source before incorporation in galena crystals. The Pontes e Lacerda gold deposits yielded ages correlated to the Aguapei event and probably were formed during a Proterozoic contractional tectonic period in the southwestern part of the Amazon craton, which may characterize an important metallogenic epoch in the Pontes e Lacerda region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to evaluate the use of shallow seismic technique to delineate geological and geotechnical features up to 40 meters depth in noisy urban areas covered with asphalt pavement, five survey lines were conducted in the metropolitan area of São Paulo City. The data were acquired using a 24-bit, 24-channel seismograph, 30 and 100 Hz geophones and a sledgehammer-plate system as seismic source. Seismic reflection data were recorded using a CMP (common mid point) acquisition method. The processing routine consisted of: prestack band-pass filtering (90-250 Hz); automatic gain control (AGC); muting (digital zeroin) of dead/noisy traces, ground roll, air-wave and refracted-wave; CMP sorting; velocity analyses; normal move-out corrections; residual static corrections; f-k filtering; CMP stacking. The near surface is geologically characterized by unconsolidated fill materials and Quaternary sediments with organic material overlying Tertiary sediments with the water table 2 to 5 m below the surface. The basement is composed of granite and gneiss. Reflections were observed from 40 milliseconds to 65 ms two-way traveltime and were related to the silt clay layer and fine sand layer contact of the Tertiary sediments and to the weathered basement. The CMP seismic-reflection technique has been shown to be useful for mapping the sedimentary layers and the bedrock of the São Paulo sedimentary basin for the purposes of shallow investigations related to engineering problems. In spite of the strong cultural noise observed in these urban areas and problems with planting geophones we verified that, with the proper equipment, field parameters and particularly great care in data collection and processing, we can overcome the adverse field conditions and to image reflections from layers as shallow as 20 meters.