181 resultados para Glycerol concentration
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This study was performed in order to determine the effect of the addition of different concentrations of glycerol and ethanol over functional and structural properties of zein-oleic acid films. Films were prepared from zein and oleic acid formulations, containing: 0, 10, 20 and 30% (w/w) of glycerol as plasticizer and 75, 80, 85, 90 and 95% (v/v) of ethanol as zein solvent. Water vapor permeability (WVP) at 4 and 24 C, opacity, water solubility and structural behavior of the film were assessed. The film water barrier properties, WVP and water solubility, were increased when higher ethanol concentration and lower glycerol concentration were used. Furthermore, WVP at 4 C was lower than WVP at 24 C due to the crystalline solid state of oleic acid at lower temperatures. Likewise, opacity, homogeneity and structure of the composite film were improved as ethanol increased and glycerol lowered. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Most commercial recombinant proteins used as molecular biology tools, as well as many academically made preparations, are generally maintained in the presence of high glycerol concentrations after purification to maintain their biological activity. The present study shows that larger proteins containing high concentrations of glycerol are not amenable to analysis using conventional electrospray ionization mass spectrometry (ESI-MS) interfaces. In this investigation the presence of 25% (v/v) glycerol suppressed the signals of Taq DNA polymerase molecules, while 1% (v/v) glycerol suppressed the signal of horse heart myoglobin. The signal suppression was probably caused by the interaction of glycerol molecules with the proteins to create a shielding effect that prevents the ionization of the basic and/or acidic groups in the amino acid side chains. To overcome this difficulty the glycerol concentration was decreased to 5% (v/v) by dialyzing the Taq polymerase solution against water, and the cone voltage in the ESI triple-quadrupole mass spectrometer was set at 80-130 V. This permitted observation of a mass spectrum that contained ions corresponding to protonation of up to 50% of the ionizable basic groups. In the absence of glycerol up to 85% of the basic groups of Taq polymerase became ionized, as observed in the mass spectrum at relatively low cone voltages. An explanation of these and other observations is proposed, based on strong interactions between the protein molecules and glycerol. For purposes of comparison similar experiments were performed on myoglobin, a small protein with 21 basic groups, whose ionization was apparently suppressed in the presence of 1% (v/v) glycerol, since no mass spectrum could be obtained even at high cone voltages. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The effect of salts, detergents and chaotropic agents on mass spectrometric analysis are relatively well understood, mainly due to their actions decreasing the performance of ESI interface in mass spectrometric analysis. However, there are few studies in the literature characterizing the effect of protein stabilization by glycerol, followed in some circumstances by the suppression of protein signal when ESI interface is used. The aim of the present research was to investigate in details the mass spectrometric behavior of some proteins in presence of high levels of glycerol during ESI-MS analysis. Thus, horse heart myoglobin and chicken ovalbumin were used as standard proteins. It was demonstrated that the presence of 1% (v/v) glycerol suppressed the signal of these proteins during the ESI-MS analysis, even when the sample nozzle potential was scanned from 28 to 80 V. However, when the glycerol concentration was decreased to 0.5% (v/v) and the sample cone voltage adjusted to 50 V, a perfect envelope of peaks was observed, allowing the spectrum deconvolution and the molecular mass determination with mass accuracy lower than 0.01% in each situation. A molecular explanation for this suppressive effect and for the analytical overcoming of this difficult is proposed.
Resumo:
A glassy carbon electrode chemically modified with nickel oxyhydroxide from a nickel hexacyanoferrate (NiHCF) film was used to determine glycerol in biodiesel by cyclic voltammetry. The modified electrode exhibited a linear response to glycerol concentration in the range from 0.05 to 0.35mmol L-1, and a detection limit of 0.030mmol L-1. The glycerol concentration found in the biodiesel sample was 0.156mmol L-1. The method developed in this study showed a recovery of (100.3±5.0)%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Cryopreservation of spermatozoa is a pivotal tool in assisted reproduction, and studies aiming to establish optimal freezing/thawing protocols are essential to enhance sperm survival. The objectives of the present study were to (1) compare the cryoprotective efficiency of three different glycerol concentrations (3%, 5%, and 7%) on the basis of post-thaw sperm quality and (2) investigate whether the incidence of morphologically abnormal sperm in fresh samples is related to cryodamage sensitivity. Semen was collected from six tomcats using an artificial vagina (total 18 ejaculates). Each ejaculate was diluted using Tris-egg yolk-based extender (TEY), evaluated, equally divided into three aliquots, and rediluted using TEY with and without glycerol to achieve final concentrations of 3%, 5%, and 7%. Samples were loaded into 0.25 mL straws, equilibrated for 60 minutes at 5 °C, frozen, and then thawed at 46 °C for 12 seconds. Fresh and frozen-thawed samples were evaluated for sperm motion parameters (computer-assisted sperm analysis), plasma membrane integrity (PMI; propidium iodide and carboxyfluorescein diacetate), and DNA integrity (acridine orange). Plasma and acrosomal membrane integrity were assessed by flow cytometry (propidium iodide and fluorescein isothiocyanate-conjugated pea (Pisum sativum) agglutinin) immediately after thawing. Sperm motion parameters were also evaluated at 30 and 60 minutes of postincubation. For all treatment groups, cryopreservation significantly impaired the PMI and sperm motion parameters, except for straightness and amplitude of lateral head displacement. DNA integrity showed a slight reduction (P < 0.05) when 3% glycerol was used. The percentage of total motility, progressive motility, and rapid spermatozoa were significantly lower immediately after thawing and up to 60 minutes of incubation for the 3% glycerol group when compared with 5% and 7%. No difference (P > 0.05) was found for PMI, acrosome integrity, and DNA integrity among post-thaw groups. However, higher (P < 0.05) incidence of viable cells with reacted acrosome and dead cells with intact acrosome were observed with 7% and 3% glycerol, respectively. Percentage of morphologically abnormal spermatozoa in fresh sample was positively correlated with PMI only in the 3% glycerol group and negatively correlated with sperm motility in the 5% and 7% groups. In conclusion, the final concentration of 5% glycerol offered better cryoprotective effect for ejaculated cat sperm, and the relationship found between prefreezing sperm morphology and post-thaw sperm quality showed to be dependent on final glycerol concentration. © 2013 Elsevier Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amino acids are well metabolized by Streptomyces clavuligerus during the production of clavulanic acid using glycerol as main carbon and energy source. However, only a few amino acids such as arginine and ornithine are favorable for CA biosynthesis. The aim of this work was to optimize the glycerol:ornithine molar ratio in the feed medium containing only these compounds to maximize CA production in continuous cultivation. A minimum number of experiments were performed by means of a simple two-level full-factorial central composite design to investigate the combined effect of glycerol and ornithine feeding on the CA concentration during the intermittent and continuous process in shake-flasks. Statistical analysis of the experimental data using the response surface methodology showed that a glycerol-to-ornithine molar ratio of approximately 40:1 in the feed medium resulted in the highest CA concentration when fermentation was stopped. Under these optimized conditions, in bench-scale fermentor runs, the CA concentration reached more than double the concentration obtained in shake-flasks runs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In potentiometric-flow systems, linear-potential responses for logarithmic concentrations can be attained for first-(or pseudo-first-) order reactions in which the monitored chemical species react with the analyte during a fixed time interval. To demonstrate this property, the determination of glycerol based on its oxidation by periodate and potentiometric monitoring of the remaining periodate was selected. Influence of reagent concentration and timing on the linearity of the analytical curve were investigated. A mathematical treatment was derived, and potentialities/limitations of the approach were outlined. The system was applied to analysis of soap and lixivia samples. The analytical curve within 200 and 2000 mg L-1 (r = 0.99975; n = 5) was described as E = 8.166 + 0.0478 (glycerol). The sample throughput was 100 h(-1), and a measurement repeatability within 0.5 mV was always observed. By applying a t-test, there was no statistical difference between the results obtained by the proposed procedure and by iodimetric titration at the 95% confidence level. (C) 2000 John Wiley & Sons, Inc. Lab Robotics and Automation 12:41-45, 2000.
Resumo:
The present study describes a methodology of dosage of glycerol kinase (GK) from baker's yeast. The standardization of the activity of the glycerol kinase from baker's yeast was accomplished using the diluted enzymatic preparation containing glycerol phosphate oxidase (GPO) and glycerol kinase. The mixture was incubated at 60 degrees C by 15 min and the reaction was stopped by the SDS solution addition. A first set of experiments was carried out in order to investigate the individual effect of temperature (7), pH and substrate concentration (S), on GK activity and stability. The pH and temperature stability tests showed that the enzyme presented a high stability to pH 6.0-8.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The K(m) of the enzyme for glycerol was calculated to be 2 mM and V(max) to be 1.15 U/mL. In addition, modeling and optimization of reaction conditions was attempted by response surface methodology (RSM). Higher activity values will be attained at temperatures between 52 and 56 degrees C, pH around 10.2-10.5 and substrate concentrations from 150 to 170 mM.This low cost method for glycerol kinase dosage in a sequence of reactions is of great importance for many industries, like food, sugar and alcohol. RSM showed to be an adequate approach for modeling the reaction and optimization of reaction conditions to maximize glycerol kinase activity. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The catalytic properties of monomodal microporous and bimodal micro-mesoporous zeolites were investigated in the gas-phase dehydration of glycerol. The desilication methodology used to produce the mesoporous zeolites minimized diffusion limitations and increased glycerol conversion in the catalytic reaction due to the hierarchical system of secondary pores created in the zeolite crystals. The chemical and structural properties of the catalyst were studied by X-ray diffraction, nitrogen adsorption-desorption isotherms, NH3-TPD and pyridine chemisorption followed by IR-spectroscopy. Although the aim was to desilicate to create mesoporosity in the zeolite crystals, the desilication promoted the formation of extra-framework aluminum species that affected the conversion of glycerol and the products distribution. The results clearly show that the mesoporous zeolites with designed mesopore structure allowed a rapid diffusion and consequently improved the reaction kinetics. However, especial attention must be given to the desilication procedure because the severity of the treatment negatively interfered on the Brønsted and Lewis acid sites relative concentration and, consequently, in the efficiency of the catalysis performed by these materials. On the other hand, during the catalytic reaction, the intracrystalline mesopores allowed carbonaceous compounds to be deposited herein, resulting in less blocked micropores and catalysts with higher long-term stability.
Resumo:
Two studies were conducted to understand sperm cryosensitivity in an endangered equid, the Przewalski's horse (Equus ferns przewalski), while testing the cryoprotectant ability of formamides. The first assessed the toxicity of permeating cryoprotectants (glycerol, methylformamide IMF] and dimethylformamide [DMF]) to Przewalski's horse spermatozoa during liquid storage at 4 C. The second examined the comparative influence of three diluents (with or without formamides) on cryosurvival of sperm from the Przewalski's versus domestic horse. When Przewalski's horse spermatozoa were incubated at 4 C in INRA 96 with differing concentrations of glycerol, MF or DMF or a combination of these amides, cells tolerated all but the highest concentration (10% v/v) of MF alone or in combination with DMF, both of which decreased (P < 0.05) motility traits. There was no effect of cryoprotectants on sperm acrosomal integrity. In the cryosurvival study, average sperm motility and proportion of cells with intact acrosomes in fresh ejaculates were similar (P> 0.05) between the Przewalski's (67%, 84%, respectively) and domestic (66%, 76%) horse donors. Sperm from both species were diluted in lactose-EDTA-glycerol (EQ), Botu-Crio (BOTU; a proprietary product containing glycerol and MF) or SM (INRA 96 plus 2% [v/v] egg yolk and 2.5% [v/v] MF and DMF) and then frozen over liquid nitrogen vapor. After thawing, the highest values recovered for total and progressive sperm motility, acrosomal integrity and mitochondria] membrane potential were 42.4%, 21.8%, 88.7% and 25.4 CN (CN = mean JC-1 fluorescence intensity/cell on a channel number scale), respectively, in the Przewalski's and 49.3%, 24.6%, 88.9% and 25.8 CN, respectively, in the domestic horse. Although sperm progressive motility and acrosome integrity did not differ (P> 0.05) among treatments across species, mitochondrial membrane potential was higher (P< 0.05) in both species using EQ compared to BOTU or SM media. Additionally, Przewalski's stallion sperm expressed higher (P < 0.05) post-thaw total motility in BOTU and SM compared to EQ whereas there were no differences among freezing diluents in the domestic horse. In summary, Przewalski's stallion sperm benefit from exposure to either MF or DMF as an alternative cryoprotectant to glycerol. Overt sperm quality appears similar between the Przewalski's and domestic horse, although the total motility of cells from the former appears more sensitive to certain freezing diluents. Nonetheless, post-thaw motility and acrosomal integrity values for Przewalski's horse spermatozoa mimic findings in the domestic horse in the presence of INRA 96 supplemented with 2% (v/v) egg yolk and a combined 2.5% concentration of MF and DMF. Published by Elsevier Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)